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In A Linear World 

Summary 

�	 Uncertainties can be aleatory or epistemic. 
�	 Uncertainty Quantification is the process of converting epistemic 

uncertainties to aleatory ones. 
�	 From a systems perspective, we typically employ models of real 

world processes. These models may be empirical or be 
realizations from theory. 

�	 Typically, model parameters, model states and model structure 
are subject to epistemic uncertainties that we need to quantify 

�	 Uncertainty Quantification requires the representation, 
propagation and estimation of probability density or mass 
functions associated with the states, parameters and structure 
estimates. 

�	 We study methods with simple and accessible examples in this 
course. 
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Potentials and Probabilities
 

It is easy to define a "potential function" in many cases that expresses 
belief. For example:­

2 

g(x ; σ) = e− x
2σ2 (1) 

g(0; ·) = 1 (2) 

Where, x is a scalar variable and σ2 is the variance. 
So, provided the sum exists, we commonly exchange beliefs with 
probabilities via the normalization: 

φ(x)
P(X ) = Pr(X = x) = fX (x) = = (3) 

y φ(y) 
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Identical and Independent
 

A discrete random variable (rv) X takes on a random value from
 
a distribution.
 
Sampling the distribution implies producing a sequence of rvs,
 
each holding a sample. These rvs are identical by construction.
 
Each rv is independent of the other in the sequence.
 
The rvs are exchangeable; the order doesn’t matter here.
 
We refer to this as iid.
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Sampling
 

Sampling: A sample of size n is a set of iid rvs X1 . . . Xn. 
Sometimes, we don’t have an explicit distribution to start with, but 
a process real or numerical, that we sample, using sensors or 
observation equations. 
Variously denoted as a transfer function, sampler, model, sensor 
or other abstractions, these objects give us access to the 
distribution by repeated inquiry. 
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Estimator
 

There is a distribution.
 
There is an iid sample.
 
There is a statistic calculated from the sample (e.g. mean,
 
variance).
 
The statistics estimate the parameters of the distribution.
 
The estimate is uncertain and this uncertainty has its own
 
distribution; the sampling distribution of the statistic.
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Central Limit, a good start?
 

The sampling distribution of the statistic can be estimated by
 
repeatedly drawing n-length sample sequences from a
 
distribution, calculating the statistic and then considering the
 
resulting distribution.
 
If the original distribution had a mean m and variance s, then in
 
large n, the sampling distribution:
 
Converges to a Gaussian.
 

sThe sample mean converges ms → m and has variance v = n 

The sample variance converges as (n − 1)v = χ2(n − 1) . 
Small sample problem! 
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Confidence and Error
 

When communicating an estimate of a parameter of the
 
distribution (e.g. mean) of a quantity of interest (e.g. model state
 
or parameter), be sure to communicate the uncertainty in the
 
estimate (the parameters of the sampling distribution).
 
These include "standard error", "variance", "confidence interval",
 
"the error bars" etc.
 
Often this will require iid sampling from the available data.
 
Various techniques such as jacknife and bootstrap are useful.
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Random/Stochastic Process
 

The future outcome is not deterministic. e.g. temperature over 
time at the intersection of Ring Road and Mehrauli road... 
Let’s consider an rv sequence: X1 . . . Xn; causality is implied 
going right. 
We may think of the distributions P(Xi ) or more generally 
P(X1 . . . Xn). 

Stationarity: (of the distribution, not process!) implies 
P(X1+τ . . . Xn+τ ) = P(X1 . . . Xn) 
Markovianity: (is that a word!) implies 
P(Xn|Xn−1 . . . X1) = P(Xn|Xn−1)
 
Correlation: (C1τ ) = E [(Xn − E(Xn))(Xn+τ − E(Xn+τ ))] and the
 
relaxation time τr is when C1τr is small.
 
Ergodicity: Implies one can exchange time averages with ensemble
 
averages x̄ =< x >.
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In A Linear World 

In a Linear Gaussian World
 

1. Two examples of linear models. 
2. Assumption of Gaussian uncertainties. 
3. Parameter and State Estimation 
4. Uncertainty propagation. 
5. We may skip the derivations! 

Quantifying Uncertainty 

10



In A Linear World 

AR Model–Some History
 

Did you know – the Yule Walker Equations for identifying an AR 
model are: 

1. YULE (1927): AR(2) model for sunspots. 
2. WALKER (1931): AR(4) model for darwin pressure/Southern 

Oscillation by observing Tahiti-Darwin correlation. 
Methodology has had explosive impact in many, many areas. 
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Emperical models or Physical models?
 

This is a dilemma for modeling many physical processes: 
1.	 Physics-based models applicable to the full-range of dynamics, 

but difficult to implement and often with too-many degrees of 
freedom for the problem of interest. 

2. Empirical ones can’t generalize, limited predictability. 
Often, it takes both skills to build a good model but the two don’t 
speak the same language or communicate well. 
As Walker says: 
There is, today, always a risk that specialists in two subjects, using 
languages full of words that are unintelligible without study, will grow 
up not only without knowledge of each other’s work, but also will 
ignore the problems which require mutual assistance. 
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Plot of Airline Passenger data 
Source: Hyndman, R.J., Time Series Data Library, 
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Plot of Airline Passenger data
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AR (n) Model
 

Xn = α1Xn−1 + α2Xn−2 + . . . + αpXn−p + ηn (4) 

Where Xi is a zero-mean scalar measurement at discrete time iΔt 
and ηn is the random perturbation (noise, uncorrelated in time) at 
discrete time nΔt . Taking expectation up to a lag of p. 

< XnXn−1 > = α1 < Xn−1Xn−1 > +α2 < Xn−1Xn−2 > + 

. . . + αp < Xn−1Xn−p > + < Xn−1ηn > (5) 

σ2 = α1σ
2 

01 + . . . + αpσ
2 (6)01 00 + α2σ

2
0p−1
 

ρ1 = α11 + α2ρ1 + . . . + αpρp−1 (7)
 

σ0
2 
kWhere, ρk is the lag-k autocorrelation coefficient, ρk = 

σ2 and 
00 

σ0
2 
k the lag-k auto-covariance, by definition. 
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Expanding further, we get
 

ρ1 = α11 + α2ρ1 + . . . + αpρp−1 

ρ2 = α1ρ1 + α21 + . . . + αpρp−2 

. . . . . .
 
ρp = α1ρp−1 + α2ρp−2 + . . . + αp1
 

Providing the Yule-Walker model 

ρ = Rα 
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We might also model directly;
 

Xp = α1Xp−1 + α2Xp−2 + . . . + αpX0 + ηp 

Xp+1 = α1Xp + α2Xp−1 + . . . + αpX1 + ηp+1 

X2p−1 = α1X2p−2 + α2X2p−3 + . . . + αpXp−1 + η2p−1 

Rewritten, in vector form: 

x = Hα + η 
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How to Solve?
 

Least Squares: 
J(α) := ||x − Hα|| 

Understand the notation and terms. 

dJ/dα = 0 (8) 
⇒ HT x = HT Hα (9) 
⇒ α̂ = (HT H)−1HT x (10) 

Least Squares Estimate using the Pseudo inverse. Stationary Point. 
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AR model identification 
AR(10) model (YW): 1.0000 − 1.04140.03020.0952 − 0.0694 − 
0.00770.1268 − 0.04630.03400.0185 − 0.1309 
AR(10) model (LS): 1.0000 − 1.15230.4705 − 0.19670.3101 − 
0.38860.2488 − 0.27410.4393 − 0.2832 − 0.1736 
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Parameter Estimators: What about Noise?
 

Least Square Estimate: α̂ = (HT H)−1HT x
 
There is a noise term η. How to account for it?
 
Maximum Likelihood Estimate, when η ∼ N(0, CXX ):
 

α̂ = (HT C−1H)−1HT C−1x (11)xx xx 

With uncertainty estimate: 
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Bayesian Estimate
 

P(α|x) ∝ P(x |α)P(α) (12) 

Maximum a posteriori (Bayes) estimate, when η ∼ N(0, CXX ) and 
α ∼ N(ᾱ, Cαα), of mean and covariance: 

α̂ = ᾱ+ CααHT (HCααHT + Cxx )
−1(x − Hᾱ) 

Ĉαα = (HT C−1H + C−1 
xx αα )

−1 

= Cαα − CααHT (HCααHT + Cxx )
−1HCαα 

Chalk talk: HOW IS THIS DERIVED? 

Quantifying Uncertainty 

21



In A Linear World 

A Physical Example
 

Exchange the positions of letters "K" ad "C" below! 
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Equations of Motion
 

mẍ + cẋ + kx = F (13) 
ẍ + 2ηω0ẋ + ω0

2x = F (14) 

cWhere, the damping ratio η = 
2 
√ 

km 
and the natural frequency  

ω0 =
k We write this in state-space form: m 
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Spring Mass Damper System 

Ẋ = AX (15) 

Chalk Talk: State-space Notation. 
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Spring Mass System
 

Ẋ = AX + F (16) 
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Discretization 

We can solve 
Ẋ = AX + F (17) 

using numerical methods, e.g. Runge-Kutta methods (In matlab,
 
ode45). Let’s do demo.
 
But to understand, let’s take an Euler discretization with zero-order
 
hold of forcing. Then
 

AΔtAd = e = L−1[(sI − A)−1]t=Δt (18) 
Fd = A−1(Ad − I)B (19) 

xt+Δt = Adxt + Fd (20) 
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We Just Say
 

xn+1 = M(xn; α) (21) 
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Recap
 

Setup a Bayesian problem.
 
Assumption of Linearity and Gaussianity.
 
Specify the Objective.
 
Minimize.
 
Calculate Uncertainty.
 

There appeared to be some questions about Gaussian distributions. 
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In A Linear World 

Time Dependent Example
 

xn+1 = M(xn; α) 

y = Hxn + η 
n 

We have assumed the parameter vector is known constant, the model 
is deterministic, the observations are linearly related, but additively 
noisy and time-independent with η = N(0, R). We are given a series 
of measurements y

0 
. . . y

m 
and we are asked to estimate the initial 

condition x0. We may simply produce a least-squares function: 

mm 
J(x0) := (x0 − xb)

T C−1 (yi − Hxi )
T R−1(yi − Hxi )00 (x0 − xb) + 

i=1 
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Formulation
 

There is some “background” state xb, from which the optimal 
initial conditions are a perturbation.
 
There is a cost for departing from measurements and
 
background, the former estimated from the known sensor noise.
 
There’s no Bayesian MAP formulation here.
 
Even so, the objective isn’t well-formulated. There aren’t enough
 
constraints to relate “future” measurements to the initial
 
condition.
 
But we do not know M, the model, provides such a constraint.
 
Because this model is deterministic, we introduce the lagrange
 
multiplier:
 

Quantifying Uncertainty 

30

I

I

I

I

I



In A Linear World 

Objective
 

J(x0 := 
1 
(x0 − xb)

T C−1 
00 (x0 − xb)+2

m � � 
T

m 1 
(y − Hxi )

T R−1(y − Hxi ) + λi [xi − M(xi−1; α)]i i2
i=1 

The solution must be a variation on the state space trajectory that the 
model constrains it to be in. 
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A Bayesian Perspective
 

P(x0|y . . . y ) ∝ P(y |xn)P(xn|xn−1) . . . P(y |x1)P(x1|x0)1 n n 1

P(x0) (22) 

Assuming a perfect model has the effect of embedding the model 
directly. Thus we get 

J(x0 := 
1 
(x0 − xb)

T C−1 
00 (x0 − xb)+2

mm 1 
(y − HM(xi−1))

T R−1(y − HM(xi−1))i i2
i=1 

The solution must again be a variation on the state space trajectory 
that the model constrains it to be in. 
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Solution
 

dJ 
= λi − 

∂MT 

λi+1 − HT R−1(y − Hxi ); 0 < i < m
dxi ∂xi 

i
 

dJ 
= λm − HT R−1(y − Hxm)
mdxm
 

dJ ∂MT
 

= C−1 
00 (x0 − xb) − λ1dx0 ∂x0
 

dJ
 
= xj − M(xj−1; α); 0 < j ≤ m

dλj 

For a stationary point, we consider Euler-Lagrange equations. 
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“Forward Backward” 

Forward(from λ) 

xi = M(xi−1; α) 

0 < i < M 

Backward(from x) 

λm = HT R−1(y − Hxm)m 

∂MT 

λi = λi+1 + HT R−1(y − Hxi )i∂xi 

∂MT 

x̂0 = xb + C00 λ1∂x0 
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On the Buggy
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Uncertainty? 
Via Linearization 

Forward(you’ll need this in the end) 

∂M ∂MT 

Cii = Ci−1i−1 0 < i ≤ m 
∂xi−1 ∂xi−1 

What about backward? Convenient via information form: 

ˆ = HT R−1HImm 

∂MT ∂M
Îii = Ii+1i+1 + HT R−1H 

∂xi ∂xi � �−1 
∂M ∂MT 

ˆ C−1 ˆC00 = 00 + I11
∂x0 ∂x0 

∂MHere L = is the Jacobian of M and LT is its adjoint. ∂xi 

Quantifying Uncertainty 

36



In A Linear World 

Example: Double Pendulum
 

0.0012 0 
0 0.0012C00 = 0 0 
0 0 

Ten seconds later: 
0.0002 -0.0005 
-0.0005 0.0130Cnn = 0.0001 0.0007 
0.0020 -0.0172 

0
 
0
 

0.0012
 
0
 

0.0001 
0.0007 
0.0003 
-0.0000 

0
 
0
 
0
 

0.0012
 

0.0020 
-0.0172 
-0.0000 
0.0409 
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Example: Double Pendulum
 

With a measurement every second with uncertainty same as C00 
0.0130 -0.0033 0.0127 -0.0009 

Ĉ00 = 1.0e-03 * -0.0033 
0.0127 

0.1259 
-0.0004 

-0.0004 
0.0268 

-0.0148 
-0.0061 

-0.0009 -0.0148 -0.0061 0.2176 
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Issues
 

Key components: Propagating forward, propagating backward, 
updating . . . to convergence. 

1	 There are huge dimensionality issues! - Monte-carlo, spectral and 
multiscale methods. 

2	 What about the jacobian and adjoint calculations? -Statistical 
approximations. 

3	 What about non-Gaussian uncertainties? -Bayesian inference 
4	 Can we not linearize? -Yes 
5	 What about model error? -Bayesian approaches. 
6	 How about a full fixed interval estimate? -Natural extension. 
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Unknown Parameter
 

We’ve assumed the model is perfect. How would we deal with 
stochastic forcing, parameterization, or uncertain parameters? 
Let’s look at parameter case, it is now an unknown constant of the 
simulation: 

J(x0, α) := 
1 
(x0 − xb)

T C−1 
00 (x0 − xb)2

m
T+ 

m 1 
(y − Hxi )

T R−1(y − Hxi ) + λ [xi − M(xi−1; α)]ii i2
i=1 

+ (α − αb)
T C−1 

αα (α − αb) 
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Gradients
 

dJ 
dxi 

= λi − 
∂MT 

∂xi 
λi+1 − HT R−1(y

i 
− Hxi ); 0 < i < m 

dJ 
dxm 

= λm − HT R−1(y
m 
− Hxm) 

dJ 
dx0 

= C−1 
00 (x0 − xb) − 

∂MT 

∂x0 
λ1 

dJ 
dλj 

= xj − M(xj−1; α); 0 < j ≤ m 

dJ 
dα 

= C−1 
αα (α − αb) − 

m 

i 

∂MT 

∂α 
λi 

Joint state-parameter estimate, is typically difficult, often approached 
by interleaving. When the parameters don’t change, as here, then the 
solution may avoid overfitting issues. Sometimes parameter errors 
are referred to as model errors, but this is not strictly correct. 
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What about model error?
 

xn+1 = M(xn; α) + w 

y = Hxn + η 
n 

Under Gaussian conditions,w ∼ N(0, Cww ), say. Then, we can’t 
impose a Lagrange multiplier as we’ve done, why? 

Still, least-squares formulations can be constructed, but it is better to 
think about the problem in Bayesian terms, for the fixed point: m 

P(x0|y ) ∝ P(Y1 = y |X1 = x1) P(X1 = x1|X0 = x0)P(X0 = x0)1 1
X1 
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Missing Data
 

0.4414 
0.8154 
-1.0004 
-0.1735 
0.2328 
NaN 
NaN 
NaN 
NaN 
NaN 

0.3793 
1.0269 
-0.2160 
1.5519 
0.5149 
0.8682 
-0.8680 
0.8888 
0.3925 
-0.8056 

0.5958 
2.0754 
-1.5771 
-0.8164 
-0.0080 
-0.1971 
-0.4592 
-0.8460 
-1.3717 
0.5971 

0.2166 -0.1713 
-0.2729 -0.6826 
-0.0468 -1.8362 
-0.7408 -0.0367 
0.4749 0.0625 
0.4203 0.0107 
0.1704 0.9506 
0.4277 0.2475 
1.4422 0.7604 
-0.8732 0.6066 
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Estimating a Model from Data
 

yi = Mxi + n (23) 

zi = [xi 
T yi 

T ]T (24) 
P(M|zi ) ∝ P(zi |M)P(M) (25) 

= P(yi |xi , M)P(xi |M)P(M) (26) 
= P(yi |xi , M)P(xi ) (27) 

We assume an uninformative prior on the model and calculate the 
MLE. 
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The Objective
 

J(M) := 
1 m 

(yi − Mxi )
T C−1(yi − Mxi )yyN 

i 

+(xi − x̄)T C−1(xi − x̄) (28)xx 
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The Stationary Point
 

dJ/dM = 0 (29) 
1 m 

C−1 T 
yy (yi − Mxi )xi = 0 (30)

N 
i 
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The Linear Model
 

dJ/dM = 0	 (31) 
1 m 

C−1 T 
yy (yi − Mxi )xi = 0	 (32)

N 
i 

< yixi 
T	 > = M < xixi 

T > (33) 

M = CyxC−1 (34)xx 

Where, xi and yi are zero-mean variables, wlog. 
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The Missing Data Estimate and Uncertainty 

Estimate: 

M 

ŷ 

= 

= 

Cyx C−1 
xx 

Cyx C−1 
xx x̂ 

(35) 

(36) 
(37) 

Uncertainty follows from objective: 

J(xi ) := (yi − Mxi )
T C−1 

yy (yi − Mxi ) 

+(xi − x̄i )
T C−1 

xx (xi − x̄i ) (38) 
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Fisher Information 

Uncertainty Estimate: 

d2J/dxi 
2 

Ĉyy 

= 

= 

MT C−1 
yy M + C− 

xx 1 

(C−1 
xx Cxy C−1 

yy Cyx C−1 
xx + C−1 

xx )
−1 

(39) 

(40) 
(41) 

Uncertainty follows from objective: 

J(xi ) := (yi − Mxi )
T C−1 

yy (yi − Mxi ) 

+(xi − x̄i )
T C−1 

xx (xi − x̄i ) (42) 
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Application to Missing Information
 

Step 1: Estimate the full covariance Czz from available data. 
Update the Linear Model from its components Cyx and Cxx . 
Step 2: Estimate the missing data from the most recent model. 
Repeat 

This technique generalizes to Expectation-Maximization, and is a
 
very interesting way of solving, often complex, Bayesian inference
 
problems.
 
READING: Reg-EM.
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Infilled
 

Noise iid, with std. 0.1 
0.2081 0.8682 -0.1971 0.4203 0.0107 
-0.1081 -0.8680 -0.4592 0.1704 0.9506 
-0.0021 0.8888 -0.8460 0.4277 0.2475 
0.0879 0.3925 -1.3717 1.4422 0.7604 
-0.0376 -0.8056 0.5971 -0.8732 0.6066 
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Towards a Nonlinear World.
 
P1θ̈  1 + P3θ̈  2 cos(θ2 − θ1) − P3θ̇2

2 sin(θ2 − θ1) + 
P4g sin θ1 = 0 

.• 

θ1 L1	 P2θ̈  2 + P3θ̈  1 cos(θ2 − θ1) + P3θ̇1
2 sin(θ2 − θ1) + 

P5g sin θ2 = 0 

θ2 L2 

Let, 

P1 = (m1 + m2)L2 
1 

P2 = m2L2 
2 

P3 = m2L1L2 

P4 = (m1 + m2)L1 

P5 = m2L2 

Quantifying Uncertainty 

52



MIT OpenCourseWare
http://ocw.mit.edu 

12.S990 Quantifying Uncertainty
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

	In A Linear World



