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18. Cross-Spectra and Coherence 

Definitions 

“Coherence” is a measure of the degree of relationship, as a function of frequency, between two time 

series, {p> |p. The concept can be motivated in a number of ways. One quite general form is to postulate 

a convolution relationship, 

X4
|p = dn{p�n + qp (18.1) 

�4 

where the residual, or noise, qp> is uncorrelated with {p> ? qp{s A= 0= The dn are not random (they 

are “deterministic”). The infinite limits are again simply convenient. Taking the Fourier or }�transform 

of (18.1), we have 

|̂ = ˆ{+ ˆdˆ q= (18.2) 

Multiply both sides of this last equation by ˆ� and take the expected values {

? ˆ{ d ? ˆ{ qˆ|ˆ� A= ˆ {ˆ� A + ? ˆ{� A (18.3) 

where ? ˆ{qˆ� A= 0 by the assumption of no correlation between them. Thus, 

�|{ (v) = d̂ (v)�{{ (v) > (18.4) 

where we have defined the “cross-power” or “cross-power density,” �|{ (v) =? ˆ{|ˆ
� A = Eq. (18=4) can be 

solved for 

d̂ (v) =  
�|{ (v) 
�{{ (v) 

(18.5) 

and Fourier inverted for dq = 

Define 

F|{ (v) =  
�|{ (v) p

�|| (v)�{{ (v) 
= (18.6) 
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F|{ is called the “coherence”; it is a complex function, whose magnitude it is not hard to prove is 

|F|{ (v)| � 1.5 Substituting into (18=5) we obtain, s 
�|| (v)

d̂ (v) = F|{ (v) = (18.7) 
�{{ (v) 

Thus the phase of the coherence is the phase of d̂ (v) = If the coherence vanishes in some frequency band, 

then so does d̂ (v) and in that band of frequencies,  there  is  no  relationship  between  |q> {q. Should 

F|{ (v) =  1> then |q = {q in that band of frequencies. (Beware that some authors use the term 

“coherence” for |F|{|2=) 

Noting that 
2 

�|| (v) = |d̂ (v)| �{{ (v) +�qq (v) > (18.8) 

and substituting for d̂ (v) > ¯ s ¯2 

�|| (v) =  ̄
 ¯ ¯ ¯ F|{ (v) 

�|| (v) 
�{{ (v) 

¯ ¯ ¯ ¯ �{{ (v) +�qq (v) = |F|{ (v)|
2 
�|| (v) +�qq (v) (18.9) 

Or, ³ ´ 
�|| (v) 1� |F|{ (v)|

2 = �qq (v) (18.10) ³ ´ 
2That is, the fraction of the power in |q at frequency v> not related to {p> is just 1� |F|{ (v)| > 

and is called the “incoherent” power. It obviously vanishes if |F|{| = 1> meaning that in that band of  

frequencies, |q would be perfectly calculable (predictable) from {p = Alternatively, 

2 2 
�|| (v) |F|{ (v)| = |d̂ (v)| �{{ (v) (18.11) 

which is the fraction of the power in |q that is related to {q. This is called the “coherent” power, so that 

the total power in | is the sum of the coherent and incoherent components. These should be compared 

to the corresponding results for ordinary correlation above. 

Estimation 

As with the power densities, the coherence has to be estimated from the data. The procedure is 

essentially the same as estimating e.g., �{{ (v) = One has observations {q> |q = The �{{ (v) > ˜˜ �|| (v) are 

{ (vq) ˆestimated from the products ˆ { (vq)
�
, etc. as above. The cross-power is estimated from products 

|̂ (vq) {̂ (vq)
� 
; these are then averaged for statistical stability in the frequency domain (frequency band-

averaging) or by prior multiplication of each by one of the multitapers, etc., and the sample coherence 

obtained from the ratio 
˜� 

F� �|{ (v)˜
|{ (v) =  = (18.12)q 

˜� v) ˜��|| ( �{{ (v) 

Exercise. Let |q = {q + (1@2){q�1 + �q> where �q is unit variance white noise. Find, analytically, 

the coherence, the coherent and incoherent power as a function of frequency and plot them. 

 ®  ®5Consider ? (ˆ { + �|̂)W A= |ˆ | ̂ |W ̂{ + �|̂) (ˆ {|2 + � hˆ{Wi + �W hˆ {i + |�|2 ||̂|2 D 0 for any choice of �= Choose � = 
  ®  ® 

{W|̂i2 @ ||̂|2 
® 
and substitute. One has 1 3 hˆ|Wi2 @ |ˆ3 hˆ {ˆ {|2 |||2 D 0= 
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Figure 23. The coherence calculation involves summing vectors to produce a dominant 

direction (determined by the coherence phase) and amplitude determined by the degree 

of coherence. Here the true coherence � = 0> and � = 8  random vectors are being 

summed. That they would sum to a zero-length vector is very improbable. As � $4> 
the expected length would approach zero. 

˜�The Blackman-Tukey method would estimate �|{ (v) via the Fourier transform of the truncated 

(windowed) sample cross-covariance: Ã ! 
1 X1 

Q�
��̃|{ (v) = F z� {q|q+� > 

Q 
q=0 

in a complete analogy with the computation by this method of ˜� v) > etc. Again, the method should �{{ (

be regarded as primarily of historical importance, rather than something to be used routinely today. 

F�˜|{ (v) is a somewhat complicated ratio of complex random variates and it is a problem to estimate ¯ ¯ ¯ ˜ ¯
its probability density. As it is a complex quantity, and as the magnitude, ¯ F (v)¯ > and phase, !̃ (v) > have 

di�erent physical characteristics, the probability densities are sought for both. The probability density 

for the amplitude of the sample coherence was studied and tabulated by Amos and Koopmans (1962). 

As this reference is not so easily obtained, a summary of the results are stated here. One has to consider 

two time series for which the true coherence magnitude, at frequency v is denoted �= Then note first, the ¯D E¯ ¯ ¯
estimate (18.12) is biassed. For example, if � = 0 (no coherence), the expected value ¯ F�˜|{ (v) ¯ A 0= 

That is, the sample coherence for two truly incoherent time series is expected to be greater than zero 

with a value dependent upon �= As � $ 4> the bias goes to zero. More generally, if the coherence is ¯ ¯ ¯ 
F� ¯

finite, ¯ ? ˜|{ (v) A¯ A �>  there is a tendency for the sample coherence to be too large. 

The reasons for the bias are easy to understand. Let us suppose that the cross-power and auto-power 

densities are being estimated by a local frequency band averaging method. Then consider the calculation 
�of �̃|{ (v) > as depicted in Fig. 23 under the assumption that � = 0= One is averaging a group of vectors in 

the complex plane of varying magnitude and direction. Because the true coherence is zero, the theoretical 

average should be a zero magnitude vector. But for any finite number � of such vectors, the probability 
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Figure 24. Probability density for the sample coherence magnitude, |F|{ (v)| > when 

the true value,  � = 0  for � = 8= The probability of actually obtaining a magnitude of 

zero is very small, and the expected mean value is evidently near 0.3. 

that they will sum exactly to zero is vanishingly small. One expects the average vector to have a finite 

length, producing a sample coherence F�˜|{ (v) whose magnitude is finite and thus biassed. The division 

� v) ˜�by 
q 
�̃|| ( �{{ (v) is simply a normalization to produce a maximum possible vector length of 1= 

In practice of course, one does not know �> but must use the estimated value as the best available 

estimate. This di!culty has led to some standard procedures to reduce the possibility of inferential error. 

First, for any �> one usually calculates the bias level, which is done by using the probability density ¡ X �2n2 
4

�2 (� + n)]2n 

sF (]) =  
2 1� �2 

¢� 

] 
¡
1� ]2

¢��
� (�)� (� � 1) �2 (n + 1)  

(18.13) 
n=0 

for the sample coherence amplitude for � = 0 and  which  is  shown in Fig.  24  for  � = 8= A conventional  ¯ ¯ ¯ ¯
procedure is to determine the value F0 below which ¯ F�˜|{ (v)¯ will be confined 95% of the time. F0 is 

the “level of no significance” at 95% confidence. What this means is that for two time series, which are 

completely uncorrelated, the sample coherence will lie below this value about 95% of the time, and one 

would expect, on average for about 5% of the values to lie (spuriously) above this line. See Fig. 25. 

Clearly this knowledge is vital to do anything with a sample coherence. 

If a coherence value lies clearly above the level of no significance, one then wishes to place an error 

bound on it. This problem was examined by Groves and Hannan (1968; see also Hannan, 1970). As 

expected, the size of the confidence interval shrinks as � $ 1 (see Fig. 26). 

The probability density for the sample coherence phase depends upon � as well. If � = 0> the phase 

of the sample coherence is meaningless, and the residual vector in Fig. 23 can point in any direction at 
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Figure 25. Power densities (upper right) of two incoherent (independent) white noise 

processes. The theoretical value is a constant, and the horizontal dashed line shows the 

value below which 95% of all values actually occur. The estimated coherence amplitude 

and phase are shown in the left two panels. Empirical 95% and 80% levels are shown 

for the amplitude (these are quite close to the levels which would be estimated from the 

probability density for sample coherence with � = 0).  Because the  two time series are  

known to be incoherent, it is apparent that the 5% of the values above the 95% level of 

no significance are mere statistical fluctuations. The 80% level is so low that one might 

be tempted, unhappily, to conclude that there are bands of significant coherence–a 

completely false conclusion. For an example of a published paper relying on 80% levels 

of no significance, see Chapman and Shackleton (2000). Lower right panel shows the 

histogram of estimated coherence amplitude and its cumulative distribution. Again the 

true value is 0 at all frequencies. The phases in the upper left panel are indistinguishable 
˜from purely random, uniformly distributed, �� ! �=� � 

all–a random variable of range ±�= If � = 1> then all of the sample vectors point in identical directions, 

the calculated phase is then exactly found, and the uncertainty vanishes. In between these two limits, 

the uncertainty of the phase depends upon �> diminishing as � $ 1= Hannan (1970) gives an expression 
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Figure 26. (from Groves and Hannan, 1968). Lower panel displays the power density 

spectral estimates from tide gauges at Kwajalein and Eniwetok Islands in the tropical 

Pacific Ocean. Note linear frequency scale. Upper two panels show the coherence ampli-

tude and phase relationship between the two records. A 95% level-of-no-significance is 

shown for amplitude, and 95% confidence intervals are displayed for both amplitude and 

phase. Note in particular that the phase confidence limits are small where the coherence 

magnitude is large. Also note that the confidence interval for the amplitude can rise 

above the level-of-no-significance even when the estimated value is itself below the level. 

for the confidence limits for phase in the form (his p. 257, Eq. 2.11): 
� ¯ h i¯ ˜2 ¯ ˜ ¯ 1 � � 

¸¯ sin ! (v) � ! (v) ¯ � 
(2� � 2) ̃ 2 w2� 2 (�) = (18.14) 

� 
�

Here w2� 2 (�) is the �% point of Student’s w distribution with 2� 2 degrees of freedom. An alternative � � � 

approximate possibility is described by Jenkins and Watts (1968, p. 380-381). 

Exercise. Generate two white noise processes so that � = 0=5 at all frequencies. Calculate the coher-

ence amplitude and phase, and plot their histograms. Compare these results to the expected probability 

densities for the amplitude and phase of the coherence when � = 0= (You may wish to first read the 

section below on Simulation.) 
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Figure 27. Coherence between sealevel fluctuations and atmospheric pressure, north 

wind and eastwind at Canton Island. An approximate 95% level of no significance for 

coherence magnitude is indicated. At 95% confidence, one would expect approximately 

5% of the values to lie above the line, purely through statistical fluctuation. The high 

coherence at 4 days in the north component of the wind is employed by Wunsch and Gill 

(1976, from whom this figure is taken) in a discussion of the physics of the 4 day spectral 

peak. 

Figure 27 shows the coherence between the sealevel record whose power density spectrum was depicted 

in Fig. 15 (left) and atmospheric pressure and wind components. Wunsch and Gill (1976) use the 

resulting coherence amplitudes and phases to support the theory of equatorially trapped waves driven by 

atmospheric winds. 

The assumption of a convolution relationship between time series is unnecessary when employing 

coherence. One can use it as a general measure of phase stability between two time series. Consider for 

example, a two-dimensional wavefield in spatial coordinates r =(u{> u| ) and represented by 

XX 
� (r>w) =  dqp cos (kqp ·r !qp) (18.15)� �qpw � 

q p 
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where the dqp are random variables, uncorrelated with each other. Define | (w) =  � (r1> w) > { (w) =  

� (r2> w) = Then it is readily confirmed that the coherence between {> | is a function of �r = r1 r2> as well �
as � and the number of wavenumbers kqp present at each frequnecy. The coherence is 1 when �r = 0, 

and with falling magnitude with growth in |�r| = The way in which the coherence declines with growing 

separation can be used to deduce the number and values of the wavenumbers present. Such estimated 

values are part of the basis for the deduction of the Garrett and Munk (1972) internal wave spectrum. 




