12.842 / 12.301 Past and Present Climate Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

#### **Climate Physics and Chemistry**

#### Role of the Atmosphere in Climate

(Read Hartmann, Chapters 1 and 2)

## Ways by which the atmosphere influences climate:

- Strong effects on radiative transfer, including filtering of ultraviolet radiation
- Large advective and convective heat transfer
- Main driver of ocean circulation
- Important role in biogeochemical cycles

### **Atmospheric Composition**

| Gas Name        | Chemical Formula | Percent Volume |
|-----------------|------------------|----------------|
| Nitrogen        | N2               | 78.08%         |
| Oxygen          | <b>O</b> 2       | 20.95%         |
| *Water          | H2O              | 0 to 4%        |
| Argon           | Ar               | 0.93%          |
| *Carbon Dioxide | CO <sub>2</sub>  | 0.0360%        |
| Neon            | Ne               | 0.0018%        |
| Helium          | He               | 0.0005%        |
| *Methane        | CH4              | 0.00017%       |
| Hydrogen        | H2               | 0.00005%       |
| *Nitrous Oxide  | N2O              | 0.00003%       |
| *Ozone          | O3               | 0.000004%      |

\* variable gases



NOAA CMDL Carbon Cycle Greenhouse Gases



Top: Global average atmospheric carbon dioxide mixing ratios (blue line) determined using measurements from the NOAA CMDL cooperative air sampling network. The red line represents the long-term trend. Bottom: Global average growth rate for carbon dioxide. Principal investigator: Dr. Pieter Tans, NOAA CMDL Carbon Cycle Greenhouse Gases, Boulder, Colorado, (303) 497-6278 (ptans@cmdl.noaa.gov, http://www.cmdl.noaa.gov/ccgg).



**Methane Measurements** 

YEAR Image courtesy of NOAA.

Top: Global average atmospheric methane mixing ratios (blue line) determined using measurements from the NOAA CMDL cooperative air sampling network. The red line represents the long-term trend. Bottom: Global average growth rate for methane. Principal investigator: Dr. Ed Dlugokencky, NOAA CMDL Carbon Cycle Greenhouse Gases, Boulder, Colorado, (303) 497-6228 (edlugokencky@cmdl.noaa.gov, http://www.cmdl.noaa.gov/ccgg).



Figure by MIT OpenCourseWare.

Figures removed due to copyright restrictions.

See Figure 1.6 and Figure 1.7 in Hartmann, Dennis L. Global Physical Climatology. Reading, MA: Academic Press, p.411. ISBN: 0123285305.

### Elements of Thermal Balance: Solar Radiation

- Luminosity:  $3.9 \times 10^{26} \text{ J s}^{-1} = 6.4 \times 10^7 \text{ Wm}^{-2}$ at top of photosphere
- Mean distance from earth: 1.5 x 10<sup>11</sup> m
- Flux density at mean radius of earth

$$S_0 \equiv \frac{L_0}{4\pi d^2} = 1370 \, Wm^{-2}$$

Stefan-Boltzmann Equation: 
$$F = \sigma T^4$$
  
 $\sigma = 5.67 \times 10^{-8} Wm^{-2} K^{-4}$ 

Sun: 
$$\sigma T^4 = 6.4 \times 10^7 Wm^{-2}$$
  
 $\rightarrow T \approx 6,000 K$ 

#### **Disposition of Solar Radiation:**

Total absorbed solar radiation =  $S_0 \left( 1 - a_p \right) \pi r_p^2$  $a_n \equiv$  planetary albedo ( $\simeq 30\%$ ) Total surface area =  $4\pi r_{D}^{2}$ Absorption per unit area =  $\frac{S_0}{\Lambda} \left( 1 - a_n \right)$ 

Absorption by clouds, atmosphere, and surface

#### **Terrestrial Radiation:**

Effective emission temperature:

$$\sigma T_e^{4} \equiv \frac{S_0}{4} \left( 1 - a_p \right)$$

#### Earth: $T_e = 255K = -18^{\circ}C$

Observed average surface temperature =  $288K = 15^{\circ}C$ 



- Transparent to solar radiation
- Opaque to infrared radiation
- Blackbody emission from surface and each layer

#### Radiative Equilibrium:

Top of Atmosphere:

$$\sigma T_A^{\ 4} = \frac{S_0}{4} \left( 1 - a_p \right) = \sigma T_e^{\ 4}$$
$$\rightarrow \quad \boxed{T_A = T_e}$$

Surface:

$$\sigma T_s^{4} = \sigma T_A^{4} + \frac{S_0}{4} \left( 1 - a_p \right) = 2\sigma T_e^{4}$$
$$\rightarrow \left[ T_s = 2^{\frac{1}{4}} T_e \right] = 303 \ K$$

# Surface temperature too large because:

- Real atmosphere is not opaque
- Heat transported by convection as well as by radiation

Figures removed due to copyright restrictions.

See Figures in Hartmann, Dennis L. Global Physical Climatology. Reading, MA: Academic Press, p.411. ISBN: 0123285305.



Figure by MIT OpenCourseWare.