
Particle Dispersion 

Random Fl ight  - L a g r a n g i a n  d i s p e r s i o n  

As an exanlple, we examine the randoin flight model. which assumes that the accel- 
erations have a stochastic component and use Newton's equations 

d X  = V d t  

d V  = A d t  + P d R  

where A is the acceleration produced by deterministic (or large-scale) forces. We include 
randoin accelerations with the random increment d R  satisfying ( d R i  d R j )  = Gijdt. 

As examples, consider a drag law for the acceleration 

with u being the water velocity. The dispersion is determined by P and T; from the 
equations: we can show that 

The latter corresponds to a diffusivity of r; = p 2 / 2 r 2 .  

Area grows like 4 ~ t  (6r;t in 3-D) 
Velocity variance is TK 
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Taylor dispersion 

In 1922, Taylor described the dispersion under the assumption that the Lagrangian 
velocity had a known covariance structure. He considered just 

We find that 
3 
-X,Xj = K X j  + x,y 
3t 

and, in the ensemble average, 

If we substitute 
t 

X = Xo + 6 V(tl)dt '  

and look at  the case where (V)  = 0 and the flow is statioilary, we have 

where R& is the covariance of the Lagrangian velocities 

For isotropic motions RL.(t) = U2RL(t)bi j  with R L ( t )  being the autocorrelation function; 
the change in x-variance 

%J. 
is given by 

From this formulal we see that 

For short times, 
(x2)  = U2t2 

For long times, if the integral Tint = Jr RL(t)dt  is finite and non-zero, 



Relation to diffiisivity 

Consider the diffusion of a passive scalar 

and define moments of the distribution 

Integrating the diffusion equation gives conservation of the total scalar: under the assum- 
tion that the initial distribution is compact and the values decay rapidly at infinity 

The first moment gives 

so that &(z) = 0. (This result would be different if there were flow as well.) 

The second inonlent 

implies that 
3 -(z 2 ) = 2ti 
at 

Thus we can identify the effective diffusivity 



Small amplitude motions 

If we assume that the scale of a typical particle excursion over time Tint is small 
compared to the scale over which the flow variesl we can relate the Lagrangian and Eulerian 
statistics. The displacement ti = Xi(t)  - Xi(0) satisfies 

and we can substitute the lowest order solution 

into the second term above to write 

and average, recognizing that the mean Lagrangian velocity is just ( g ~ i ) :  

For simplicity, we assuine that the turbulent velocities are large coinpared to the inean; 
then this becomes 

3 " 
(u:) = ( U I )  + 1 ~ i j ( ~ ;  f - t i )  = (ui) + [ d ~ R i j  (x ,  T )  

3 x j . o  

Let us assuine that the integrals with respect to r exist and split the covariance into 
its syininetric and antisyminetric parts 

with 

We can write an arbitrary ailtisymmetric tensor in terins of the unit ailtisymmetric tensor 

D?. = -t.. Qk %I tIk 

so that the contribution to the Lagrangian velocity is 



Note that the antisymmetric part of the contribution to the Lagrangian velocity is nondi- 
vergent: 

Thus the Lagrangian mean velocity has ~ont~ributions from the mean Eulerian flow, from 
the Stokes' drift, and a term which tends to move into regions of higher diffusivity 

We will discuss the meanings of these terms in more detail next. 

Chaotic advection and Stokes' drift 

We start with the basic wave 

E .  q j = -  sin(7r[x - t]) sin(7ry) 
IT 

and add a small amount of a second wave 

4 t .  
= d-4 sin(7r[x - t]) s i n ( ~ y )  + a- sin(47r[z - clt]) sin(47ry) 

7r IT 
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We look at  the particle trajectories by solving the Lagrangian equations as above 

Let's begin with the simplest case without the second wave. For small t (which is the ratio 
of the flow speed to  the phase speed, we can find an approximate solution (as before) by 
iterating 

3 3 
-ei at 2. ui(x, t') + <iGu"x,t)  + . . 

The mean Lagrangian drift is therefore 

For the primary wave 

cos 7 r ~  cos2 r y  - cos KT sin 7ry cos 7ry 
R i j ( ~ )  = - 

sin 7r~s in  7ry cos 7ry cos 2 
7 r ~  sin 7ry 



and the drift is 

- a t2 
V L  = -E2 = - sin(2xy) sin xt  

a t  2 

Note that there is a mean drift 
- t2 
U L  = - cos(2xy) 

2 

prograde on the walls and retrograde in the center. Demos, Page 5: drift <amp=O. 2> 
<amp=O. 2 comoving> <amp=l .O> <amp=l .0 comoving> <stokes drift> 
<mean> 

FINITE AMPLITUDE 

In the frame of reference of the wave (XI = X - ct) 

Thus particles simply move along the streamlines. At some Lagrangian period TL,  the 
particle will have moved one period to the left so that 

Stokes drifts occur when the Lagrangian period differs from the Eulerian period. Trapped 
particles have 

Back to chaotic advection.. . 

When we have a non-zero, the trajectories become less regular in the vicinity of the 
stagnation points. A line of particles approaching the point begins to fold, with soine fluid 
crossing into the interior and soine being ejected. Which way a parcel goes depends on the 
phase of the perturbing wave as it nears the stagnation point. 
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We can look at  Poincark sections (snapshots at the period of the perturbing wave) 

at various amplitudes to see the mixing regions Demos, Page 6: poincare sections 
<alpha=O> <alpha=O. 002> <alpha=O. 004> <alpha=O. 008> <alpha=O. 016> 
<alpha=O. 032> <alpha=O. 064> <alpha=O. 128> 

The inixing across the channel is still blocked for a small enough < 0.05 so the inixing 
is still diffusion-limited: although some gain is realized by enhanced flux out of the wall 
and a decrease in the width of the blocked region. 
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Tracer fluxes 
Next time: we'll see that the mean coilcentration (in appropriate limits) satisfies 

and 
t 3 

(ui( t )c i ( t ) )  = - [k m'(ui(t)uj(t'))] -(c) 3x j  = [ u ~  - 

With this form, we can see that the Stokes' drift does not alter tracer variance (or max- 
ima): while the Kij term tends to reduce the inaxima and the tracer variance. Thus it is 
appropriate to think of Kij as a diffusivity tensor. 

In addition, we note that for variable K ,  the center of mass of the tracer satsfies 

so that the center of mass of the tracer (for narrow distributions) indeed moves with the 
mean Eulerian flowl the Stokes' drift and the up-diffusivity-gradient term. 



Random Rossby Waves 
Consider a randomly-forced R.ossby wave in a channel: 

where 7. is randomly distributed on a disk of radius ro. This gives a streamfunctioil 

11, = ~.e[a(t)e'"] sin(eY) 

with 

and w = -pk/(k2 + e2). 

dTe-(~-$t)'r(t - .j-) 
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Froin this, we find 
$(x, +, t)11,(x'. Y', t') = 

U, 2 
-y(t-t l)  cos[k(x - x') - w(t - t')] sin(!+) sin(eY') 

2e2 
COS WT cos2 !y $ sin WT silley cos ey 

-$ sill k 2  WT silley cos ty  cos WT sin2 e+ 

Hence the mean drift is given by 

with KE = i u 2  + v 2  

The Stokes drift term is 

while the diffusivity tensor is 
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Conclusions: 

R.ossby waves cause mean westward drifts at the edges and eastward drifts in the 
center. 
Eddy diffusivities are spatially variable and anisotropic. 


