
′ 

= q

17. Quasi-geostrophic Rossby waves 

Baroclinic flows can also support Rossby wave propagation. This is most easily 

described using quasi-geostrophic theory. We begin by looking at the behavior of 

small perturbations to a zonal background flow that varies only in the meridional 

and vertical directions. Beginning with the definition of pseudo-potential vorticity 

(9.11), we let ϕ and qp be represented by zonally invariant background fields plus 

perturbations to them: 
ϕ = ϕ(y, p) +  ϕ′(x, y, p, t) 

(17.1) 
qp p(y, p) +  qp

′ (x, y, p, t) 

We next linearize the adiabatic, frictionless form of the conservation equation for 

qp (9.10) using (17.1): 

∂qp 
′

′ ∂qp∂qp 
′ 

+ ug + vg = 0, (17.2)
∂t ∂x ∂y 

where 
1 ∂ϕ 

ug = − ,
f ∂y 

(17.3)
1 ∂ϕ′ 

.v = g f ∂x 

We also note from the definition of pseudo-potential vorticity (9.11), that 

∂qp 1 ∂ϕ ∂ f0 ∂ ∂ϕ 
= ∇2 + β0 + 

∂y f0 ∂y ∂p S ∂p ∂y 
(17.4)

∂2u ∂ f2 ∂u 
= β − − 0 . 

∂y2 ∂p S ∂p 

Thus the meridional gradient of background pseudo-potential vorticity depends on 

β, the meridional gradient of the vorticity of the zonal wind, and a measure of the 

curvature of the vertical profile of the mean zonal wind. 
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Using the second of the geostrophic relations in (17.3) as well as the definition 

of pseudo-potential vorticity, (9.11), the linearized conservation relation (17.2) may 

be written 

∂ ∂ 1 ∂ f0 ∂ϕ
′ 1 ∂q ∂ϕ′ 

+ ug ∇2ϕ′ + + p = 0. (17.5)
∂t ∂x f0 ∂p S ∂p f0 ∂y ∂x 

We will examine solutions of (17.5) in the special case that the stratification is 

constant, S = constant. We will also assume that the background zonal wind, ug, 

and the associated gradient of background pseudo-potential vorticity given by (17.4) 

are slowly varying compared to the structures of perturbations to the flow. If this 

is the case, we can make the W.K.B. approximation and represent modal solutions 

to (17.5) as 

ϕ′ = Φe ik(x−ct)+i 
y 

l(y � ,p)dy� +i 
p 

m(y,p �)dp� 

, (17.6) 

where l(y, ρ) and  m(y, p) are slowly varying functions of latitude and pressure. 

Substituting (17.6) into (17.5) gives a dispersion relation: 

c = ug − 
∂qp/∂y 

(17.7).
2
0k2 + l2 + f 2mS 

Comparing this to the strictly barotropic dispersion relation (10.8) shows the strong 

similarity between barotropic and baroclinic waves. The main differences are that 

in the baroclinic case, the meridional gradient of potential (rather than actual) 

vorticity serves as the refractive index for Rossby waves, and the vertical structure 

contributes to the dispersion properties of the waves. 
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The wave frequency, which remains invariant along the ray paths followed by 

the wave energy as long as the background flow is considered to be steady, is given 

by 

k(∂qp/∂y) (17.8)
ω = kc = kug − .
2
0k2 + l2 + f 2mS 

Letting ki ≡ (k, l,m), the three components of the group velocity are given by 

2
0∂ω 

( 
qpy 

( 
f0

2 
2 

)) 
2klqpy 2kmf

q
Sk2 − l2 − py 
, (17.9)= = ug + m
cgi ,
,


4 4 4S
∂ki r
 r
 r


where 
∂qp

qpy ≡ ,
∂y 

f2 

r 2 ≡ k2 + l2 + 0 m 2 . S 
It is of some interest to compare these group velocities to the phase speeds, which 

are given by 

ω qpy k qpy k qpy
cr ≡ = ug − , − , − 

ki r2 l r2 m r2 

k2qpy 1 r2 1 S r2 (17.10) 
= cgx − 2 

r4 
, −

2 l2 
cgy , −2 f0

2 m2 
cgp 

Thus, for quasi-geostrophic Rossby waves, the flow-relative group velocity in the 

meridional and vertical directions is of opposite sign from the phase speeds in those 

directions. 

As quasi-geostrophic Rossby waves disperse in three dimensions, the associated 

wave numbers evolve following the vector group velocity, according to the relation

ship for the refraction of wave energy: 

dki ∂ω 
= − , (17.11)

dt ∂xi 
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where the total derivative indicates the rate of change following the group velocity:


dki ∂ki ∂ki = + cgj . 
dt ∂t ∂xj 

Using (17.8), the evolution of wavenumber (17.11) is [ ( ) ( )] 
dki ∂ug ∂2qp/∂y

2 ∂ug ∂2qp/∂y∂p 
= 0, k  − + , k  − + . (17.12)

dt ∂y r2 ∂ρ r2 

The interaction between Rossby waves and the background flow is of great 

interest, because in quasi-balanced flows these waves are responsible for conveying 

information from one place to another. An elegant way of quantifying the interaction 

between quasi-geostrophic Rossby waves and the background state on which they 

are assumed to propagate is through the examination of Eliassen-Palm fluxes. The 

Eliassen-Palm theory is derived as follows. 

Since quasi-geostrophic flow on an f plane is nondivergent, we may write the 

conservation equation for pseudo-potential vorticity, (9.10), in the form 

∂qp ∂ ∂ 
= − (ugqp) − (vgqp). (17.13)

∂t ∂x ∂y

Consider now the time rate of change of zonal mean pseudo-potential vorticity. First 

define a zonal average operator { }, such that for any scalar A, 

1 
∫ L 

{A} ≡  Adx,  (17.14)
L 0 

where L is the distance around a latitude circle. Applying this operator to (17.13) 

gives 

∂ ∂ {qp} = − {vgqp}. (17.15)
∂t ∂y
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{ } { } 

Now let 
vg = {vg} + vg

′ , 

qp = {qp} + qp
′ , 

where v′ is the local, instantaneous departure of vg from {vg }, but since g 

1 ∂ϕ 
vg = ,

f0 ∂x

{vg} = 0. Thus (17.15) becomes 

∂ ∂ 
∂t

{qp} = − 
∂y

{vg
′ qp

′ }. (17.16) 

The time rate of change of zonal mean pseudo-potential vorticity is equal to the 

convergence of the meridional eddy flux of pseudo-potential vorticity. 

Using the definitions of qp and vg , 

1 ∂ f0 ∂ϕ
′ 

qp 
′ = 

f0 
∇2ϕ′ + 

∂p S ∂p 
, 

1 ∂ϕ′ 
vg 
′ = ,

f0 ∂x 

where ϕ′ is the departure of ϕ from its zonal average, we can write 

1 ∂ϕ′ ∂2ϕ′ ∂ϕ′ ∂2ϕ′ ∂ϕ′ ∂ 1 ∂ϕ′ 
v ′ q ′ = + +g p f2 ∂x ∂x2 ∂x ∂y2 ∂x ∂p S ∂p0 

1 1 ∂ 
( 
∂ϕ′ )2 

∂ 
( 
∂ϕ′ ∂ϕ′ ) 

1 ∂ 
( 
∂ϕ′ )2 

= 
f0

2 2 ∂x ∂x 
+ 
∂y ∂x ∂y 

− 
2 ∂x ∂y 

(17.17) 

∂ ∂ϕ′ 1 ∂ϕ′ 1 ∂ ∂ϕ′ )2 

+ − . 
∂p ∂x S ∂p 2S ∂x ∂p 

Taking the zonal average of this gives 

1 ∂ ∂ϕ′ ∂ϕ′ ∂ ∂ϕ′ 1 ∂ϕ′ 
g p{v ′ q ′ } = 

f0
2 ∂y ∂x ∂y 

+ 
∂p ∂x S ∂p 

. (17.18) 
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Using the geostrophic relations and the hydrostatic relation (15.8), this may be 

written 

′ ′ ∂ ′ ′ ∂ f0 ′{v q } = − {u v } −  v θ′ (17.19)g p g g g∂y ∂p Sπ 

≡ ∇ · F, 

where F is the Eliassen-Palm flux, given  by  

F ≡ −{u ′ v ′ }ĵ − 
f0 
v ′ θ′ p,̂ (17.20)g g gSπ 

with ĵ and p̂ unit vectors in y and p. Thus the northward component of the Eliassen-

Palm flux is the geostrophic northward eddy flux of zonal (geostrophic) momentum, 

while the vertical component of the EP flux is the geostrophic northward eddy heat 

flux. 

The utility of the Eliassen-Palm flux lies in its role as a source of wave activity. 

This is a measure of the variance of pseudo-potential vorticity, and is defined as 

1 qp 
′2 

A ≡  
2 qpy 

. (17.21) 

We can form an equation for wave activity by multiplying (17.2), modified to take 

into account dissipation, by qp 
′ and taking the zonal average of the result: 

∂ 1 {q ′2 } + 
∂qp {v ′ q ′ } = {Dq ′ }. (17.22)

∂t 2 p ∂y p p

Now letting 

∂qp
qpy ≡ ,

∂y 
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∫ ∫ 

and noting that qpy is not a function of time or longitude, divide (17.22) through 

by qpy : 

∂ 1 p 
′2 

′ ′ 
{ 

p 
′ } 

q q

∂t 2 qpy 
+ {v q } = D 

qpy 
,p

or using (17.21) and (17.19), 

∂A 
+ ∇ · F = D, (17.23)

∂t 

where 

D ≡  D 
qp 

. 
qpy 

In the absence of dissipation of pseudo-potential vorticity, the rate of change of wave 

activity is proportional to the divergence of the Eliassen-Palm flux. Conversely, in 

a steady flow, creation or dissipation of wave activity is signified by a nonzero 

divergence of the Eliassen-Palm flux. 

In the case of plane waves, the Eliassen-Palm flux may be interpreted as the 

flux of wave activity along wave ray paths, traveling at the group velocity. This is 

shown as follows: 

First, using the definitions of wave activity (17.21) and pseudo-potential vor

ticity (9.11) and the modal decomposition (17.6), we have 

y p 

A =
2q

1 

py 

[ 

f

1 

0 
(k2 + l2) +  

f

S 
0 
m 2 

]2 

Φ2 e 2ik(x−ct)+2i l dy� +2i 
∫ 

m dp� 

(17.24) 
1 

[ 
1 f0 

]2 

=
4qpy 

Φ2 

f0 
(k2 + l2) +  S 

m 2 e 2i 
y 

l dy�+2i 
p 

m dp� 

. 
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On the other hand, using (17.6) in the definition of the Eliassen-Palm flux vector, 

(17.20), together with the usual geostrophic and hydrostatic relations, gives 

y p y p 

F = 

[ 
1 
klΦ2 e 2i l dy�+2i m dp� 

] 

ĵ + 

[ 
1 mk 

Φ2 e 2i l dy�+2i m dp  
] 

p.̂ (17.25)
2f0

2 2 S 

Now comparing (17.25) to (17.24), and using the group velocity relations (17.9) 

together with the definition of wave activity, (17.25), shows that 

Fi = cgi A. (17.26) 

Thus, for individual plane waves, the Eliassen-Palm flux is just the product of 

the Rossby wave group velocity and the wave activity. This does not hold for 

disturbances consisting of more than one plane wave, or nonmodal disturbances, as 

will be discussed in Chapter (?). Later on, we will find that the Eliassen-Palm flux 

is very useful for diagnosing the sources and sinks of Rossby waves from atmospheric 

observations. 
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