
16. Rossby waves 

We have seen that the existence of potential vorticity gradients supports the prop

agation of a special class of waves known as Rossby waves. These waves are the 

principal means by which information is transmitted through quasi-balanced flows 

and it is therefore fitting to examine their properties in greater depth. We begin by 

looking at the classical problem of barotropic Rossby wave propagation on a sphere 

and continue with quasi-geostrophic Rossby waves in three dimensions. 

a. Barotropic Rossby waves on a sphere 

The vorticity equation for barotropic disturbances to fluid at rest on a rotating 

sphere is 

dη 
dt 

= 0, (16.1) 

where 

η ≡ 2Ω sin ϕ + ζ. 

Here ζ is the relative vorticity in the z direction. Now the equation of mass conti

nuity for two-dimensional motion on a sphere may be written 

1 
[ 
∂u ∂ 

] 

+ (v cos ϕ) = 0, (16.2) 
a ∂λ ∂ϕ
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where u and v are the eastward and northward velocity components, λ and ϕ are 

longitude and latitude, and a is the (mean) radius of the earth. Using (16.2) we 

may define a velocity streamfunction ψ such that 

1 ∂ψ 
u = − , 

a ∂ϕ

and (16.3) 

1 ∂ψ 
v = . 

a cos ϕ ∂λ 

The Eulerian expansion of (16.1) can be written 

∂η u ∂η v ∂η 
+ + = 0,

∂t a cos ϕ ∂λ a ∂ϕ 

or using (16.3), 

∂η 1 
[ 
∂ψ ∂η ∂ψ ∂η 

] 

+ − = 0. (16.4)
∂t a2 cos ϕ ∂λ ∂ϕ ∂ϕ ∂λ 

We next linearize (16.4) about the resting state (u = v = 0),  for which  η = 2Ω  sin  ϕ, 

giving 

∂η′ 2Ω ∂ψ′ 
+ 

2 
= 0, (16.5)

∂t a ∂λ 

where the primes denote departures from the basic state. 
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[ ( )] 

In spherical coordinates,


η′ = ζ ′ = k̂ · ∇ × V′


1 ∂2ψ′ ∂ ∂ψ′ (16.6) 
= + cos  ϕ cos ϕ . 
a2 cos2 ϕ ∂λ2 ∂ϕ ∂ϕ 

Let’s look for modal solutions of the form 

ψ′ = Ψ(ϕ)e im(λ−σt), 

where m is the zonal wavenumber and σ is an angular phase speed. Using this and 

(16.6) in (16.5) gives 

d2Ψ dΨ 
[
2Ω m2 ] 

− tan ϕ − + Ψ = 0. (16.7)
dϕ2 dϕ σ cos2 ϕ 

This can be transformed into canonical form by transforming the independent vari

able using 

µ ≡ sin ϕ, 

yielding 

d2Ψ dΨ 
[
2Ω m2 ] 

(1 − µ 2) − 2µ − + Ψ = 0. (16.8)
dµ2 dµ σ 1 − µ2 

The only solutions of (16.8) that are bounded at the poles (µ = ±1) have the form 

Ψ =  AP n , (16.9)m
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Table 16.1. Meridional Structure of Pn
m(ϕ) Rossby Waves on a Sphere


m 

0 1 2 3 

1 sin  ϕ cos ϕ – – 

n 2 1 
2 (3 sin2 ϕ − 1) −3 sin  ϕ cos ϕ 3 cos2 ϕ – 

3 3 
2 sin ϕ(5 sin2 ϕ − 3) − 9 

2 (5 sin2 ϕ − 1) cos ϕ 45 sin ϕ cos3 ϕ −45 cos3 ϕ 

where P
nm is an associated Legendre function of degree n and order m, with  n > m.


The angular frequency must satisfy 

−2Ω 
σ = 

n(n + 1)  
. (16.10) 

As in the case of barotropic Rossby waves in a fluid at rest on a β plane, spherical 

Rossby waves propagate westward. Their zonal phase speed is given by 

cos ϕ 
c = a cos ϕσ = −2Ωa

n(n + 1)  
. (16.11) 

The first few associated Legendre functions are given in Table 16.1. The lowest order 

modes, for which m = 0, are zonally symmetric and have zero frequency. These 

are just east-west flows that do not perturb the background vorticity gradient and 

thus are not oscillatory. The lowest order wave mode, for which n = m = 1, has an 

angular frequency of −Ω and is therefore stationary relative to absolute space. This 

zonal wavenumber 1 mode has maximum amplitude on the equator and decays 

as cos ϕ toward the poles. Modes of greater values of n have increasingly fine 

meridional structure. 
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