
8. Quasigeostrophy and Pseudo-potential vorticity 

The shallow water system is probably the most simple fluid system that allows for 

divergent flow and inertia-gravity waves. Here we develop a simple set of equations 

for quasi-balanced flows of a continuously stratified fluid, based on the approxima

tion that the flow is nearly geostrophic. This system is called the quasi-geostrophic 

system. 

We begin with the horizontal momentum equation in pressure coordinates: 

dV 
+ fk̂ × V + ∇ϕ = F, (8.1)

dt 

where F is the net acceleration by frictional forces. Geostrophic balance is defined 

by the equality of the two middle terms of (8.1), so that the geostrophic wind is 

defined 

Vg ≡ 
1 
k̂ ×∇ϕ. (8.2)

f 

Using this definition, (8.1) may be rewritten 

dV 
dt 

+ f ̂k × (V −Vg) − F = 0, (8.3) 

or, equivalently, 

V = Vg + 
1 
f 
k̂ × 

dV 
dt 

− 
1 
f 
k̂ × F. (8.4) 

We will use (8.4) to investigate the relative magnitudes of the terms in the horizontal 

momentum equations. For this purpose, we shall approximate frictional acceleration 

as 

F � −V/τf , (8.5) 
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where τf is a time scale associated with frictional damping. We also define a La

grangian time scale, τττ , which can be thought of as a typical time scale over which 

a sample of fluid accelerates in a given flow. We replace the dimensional time, t, in  

(8.4) by a nondimensional time t ∗: 

t → τt  ∗ , (8.6) 

resulting in the scaled version of (8.4): 

V = Vg + R0k̂ × 
dV 

+ RF k̂ × V, (8.7)
dt 

where R0 is the Rossby number, defined 

1 
R0 ≡ , (8.8)

fτ  

and RF is a nondimensional measure of friction: 

1 
RF ≡ . (8.9)

fτf 

Note that because f varies with latitude, both R0 and RF vary with time. 

An expansion of (8.7) in terms of the geostrophic wind alone can be made by 

substituting V as given by (8.7) into the terms involving V on the right side of the 

same equation, resulting in 

V = Vg + R0k̂ × 
dVg + RF k̂ × Vg − R0

2 d
2V 

dt dt2 

− R0RF 
dV − R2 V − R0 

dV dR0 
. 

dt F dt dt 
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By repeating the procedure, this may be written 

dVg d2VgV = Vg + R0k̂ × 
dt 

+ RF k̂ ×Vg −R0
2 

dt2 

−R0RF 
dVg −R2 Vg −R0 

dVg dR0 (8.10) 
dt F dt dt 

+ O(R0
3) +  O(RF 

3 ), 

assuming that dR0 is no larger than R0.dt 

If R0 < 1 and  RF < 1, we might expect that the series (8.10) converges. The 

order zero approximation (8.10) is just geostrophic balance: 

V � Vg, 

while the order 1 approximation is called the geostrophic momentum approximation. 

Writing the order 1 approximation to (8.10) in dimensional form results in 

dVg + fk̂ × (V − Vg) −F � 0, (8.11)
dt 

where it must be remembered that F has been assumed to be at most order R0. 

The approximation (8.11) is called the geostrophic momentum approxima

tion because it consists in replacing the inertia of the actual wind by that of the 

geostrophic wind. This approximation is one component of a system of approximate 

relations. 

The second fundamental approximation to the momentum equations is to ap

proximation advection by geostrophic advection. The full geostrophic momentum 

term may be expanded to 

dVg = 
∂Vg + (Vg + Va) · ∇Vg + ω

∂Vg 
, (8.12)

dt ∂t ∂p 
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∣ ∣ 

where Va is the ageostrophic part of the wind field, and 

ω ≡ 
dp 

(8.13)
dt 

is called the pressure velocity (or just “omega”) and is proportional to the vertical 

component of velocity. 

By (8.10), it is clear that 

|Va| ∼ O(R0);|Vg| 
∣ dVg ∣moreover, we have already shown (by definition!) that ∣ dt ∣ is O(R0) compared  to  

fk̂ ×V, so that to be consistent with the order of approximation, we need to drop 

the term Va that appears in (8.13). In addition, the mass continuity equation in 

hydrostatic, pressure coordinates is 

∂ω ∇ ·V + = 0, (8.14)
∂p 

which can also be written as 

∂ω ∇ · Vg + ∇ · Va + = 0. (8.15)
∂p 

From the definition of geostrophic wind, (8.2), 

β ∂ϕ β ∇ · Vg = − = − vg, (8.16)
f2 ∂x f 

where vg is the meridional component of the geostrophic wind, and 

df 
β ≡ . (8.17)

dy 
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∣ ∣ ∣ ∣ 
< ∣ 

Comparing (8.16) to (8.15), it will be seen that if


βLy < (8.18)∼ 0(R0),
f 

then 

∣ ω ∣ ∣ ∣ ∣ ∣ ∣ Vg 
, (8.19) ∣ ∆p ∣ ∼ R0 ∣ L ∣ 

where Ly is a typical meridional scale over which the flow varies, L is an overall 

horizontal scale of flow variation, and ∆p is a pressure scale over which ω varies. 

If (8.19) is met, then we can also neglect the term involving ω in (8.12), which 

becomes 

dVg � 
∂Vg + Vg · ∇Vg. 

dt ∂t 

Using this in (8.11) gives us the quasi-geostrophic momentum equation: 

∂Vg + Vg · ∇Vg + fk̂ × (V −Vg) − F = 0. (8.20)
∂t 

The accuracy of (8.20) depends both on the smallness of R0 and on condition (8.18). 

The final element of this series of approximations is made to the thermodynamic 

equation, which may be written 

∂ ln θ ∂ ln θ ˙+ V · ∇ ln θ + ω = Q, (8.21)
∂t ∂p 

where for atmospheric applications, θ is the potential temperature and 

Q̇ = 
Ḣ

, 
cpT 
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∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ 

∣ ∣ ∣ ∣ 

where Ḣ is the heating and cp is the heat capacity at constant pressure. For the 

ocean, θ is the potential density and Q is its source, divided by the potential density 

itself. 

It may at first seem that the approximation to (8.21) that is consistent with 

the approximation we made to the momentum equation is to drop the ageostrophic 

advection and the term involving ω in (8.21), but this is not the case because in 

rotating stratified flows, the vertical gradient of θ scales very differently from its 

horizontal gradient. To see this, let’s compare the magnitude of the horizontal and 

vertical advection terms in (8.21). The magnitude of the horizontal advection is 

approximately 

|V · ∇ ln θ| �  
∣ 
vg 
∂ ln θ ∣ 

= 
∣ f
vg 
∂ug ∣ 

, (8.22) ∣ ∂y ∣ ∣ g ∂z ∣ 
where  we have used  the  thermal wind equation,  and  ug is a typical geostrophic 

velocity scale. The magnitude of the vertical advection term is 

∣ ∂ ln θ ∣ ∣ N2h ∣ ∣ω ∣ ∼ ∣R0ug 
∣ , (8.23) ∣ ∂p ∣ ∣ gL ∣ 

where we have used the hydrostatic relation, the scaling relation (8.19), h is a typical 

vertical scale of variation of the flow, and N is the buoyancy (or Brünt-Väisälä) 

frequency, defined 

∂ ln θ 
N2 ≡ g . (8.24)

∂z 

Now the ratio of the magnitudes of the vertical and horizontal advection terms in
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the thermodynamic equation is 

N2h 
R ≡ R0 ∂ug 

. (8.25) 
f L∂z 

As we will see shortly, the deformation radius in quasi-geostrophic flows is 

N 
LD = h ,

f 

so if L scales with LD in (8.25), 

R � R0Ri
1/2 , 

where Ri is the Richardson number, 

N2 

Ri ≡ ( )2 . 
∂ug 

∂z 

In both the atmosphere and the ocean, Ri is an order one quantity, because the 

Richardson number is quite large. For this reason, we must retain the vertical 

advection term in (8.21), and for consistency, we expand ln θ as 

ln θ = ln  θ(p) +  ln  θ′(x, y, p, t), (8.26) 

with the scaling relation 

∂ ln θ′ ∂ ln θ 
= O(R0) . (8.27)

∂p ∂p 

Then (8.21) is approximated by 

∂ ln θ′ 
+ Vg · ln θ′ + ω

∂ ln θ 
= ˙ (8.28)Q.

∂t ∂p 
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{ 

(Note that Q is permitted to be order 1.) 

Summary of quasi-geostrophic system: 

The quasi-geostrophic equations may be summarized: 

Dg Vg + fk̂ × (V − Vg) =  F, (8.29) 

dθ ˙Dg θ + ω = Q, (8.30)
dp 
∂ω ∇∇∇ · V + = 0, (8.31)
∂p


Vg =
1 
k̂ ×∇ϕ, (8.32)


f 

∂ϕ 
= −R

p 

( 

p
p 
0 

)R/cp 

θ atmosphere, (8.33)
∂p −Gσ ocean. 

In this set, the geostrophic operator is defined 

∂ 
Dg ≡ + Vg · ∇∇∇,

∂t 

and F is assumed to be of order R0. In (8.33) G is a function of p that depends on 

the equation of state for sea water, and θ, σ, and  ϕ (except where overbarred) are 

deviations from the basic state values of those quantities. 
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