10. Unbounded domain - non-rotating reflection from a solid boundary

We consider the reflection from a solid boundary which is at some angle with the horizontal. Consider a two-dimensional solution
$e^{-i \omega t+i k x+i m z}$ aligning x with the horizontal wave vector k_{H}
satisfying
$\mathrm{w}_{\mathrm{zz}}-\mathrm{R}^{2} \mathrm{w}_{\mathrm{xx}}=0$.
with $R^{2}=\frac{N^{2}-\omega^{2}}{\omega^{2}-f^{2}}$ and $m= \pm R k$.
The lines of constant phase are $\theta=\mathrm{kx}+\mathrm{mz}-\omega \mathrm{t}=$ constant or:

$$
+\mathrm{kx} \pm \mathrm{Rkz}-\omega \mathrm{t}=\mathrm{constant}
$$

that is
$x \pm R z=\left(\frac{\omega}{k}\right) t=$ constant $;$
energy propagates along the lines of constant phase $\mathrm{x} \pm \mathrm{Rz}=$ constant that is:

$$
\mathrm{z}=\frac{1}{\mathrm{R}} \mathrm{x} \text { (positive slope) } \mathrm{z}=\frac{-1}{\mathrm{R}} \mathrm{x} \text { (negative slope) }
$$

Figure by MIT OpenCourseWare.

These lines are the characteristics of the hyperbolic equation for w, i.e.

$$
w=f(x+R z)+g(x-R z)
$$

Consider first a wave incident and reflected at the horizontal boundary $\mathrm{z}=0$, i.e. the x axis

Figure by MIT OpenCourseWare.
$\overrightarrow{\mathrm{c}}_{\text {gi }}$ downward: energy propagates along $\mathrm{x}+\mathrm{Rz}=0$. The incident wave number $\overrightarrow{\mathrm{K}}_{\mathrm{i}}$ is perpendicular to $\overrightarrow{\mathrm{c}}_{\mathrm{gi}}$ and upward, Energy is reflected along x -Rz, upward $\overrightarrow{\mathrm{c}}_{\mathrm{gr}}$. The reflected wave number $\overrightarrow{\mathrm{K}}_{\mathrm{r}}$ is downward.
$\omega=N \cos \theta$ is conserved in the reflection.
θ is the angle of $\overrightarrow{\mathrm{K}}$ with the horizontal.
As ω is determined only by θ, the angle to the horizontal, $\overrightarrow{\mathrm{K}}_{\mathrm{i}}$ and $\overrightarrow{\mathrm{K}}_{\mathrm{r}}$ must form equal angles θ with the horizontal. In this particular case $\left|\overrightarrow{\mathrm{K}}_{\mathrm{i}}\right| \cos \theta=\left|\overrightarrow{\mathrm{K}}_{\mathrm{r}}\right| \cos \theta$.

We can demonstrate that ω is conserved as follows.
Let us consider the more general case of a wall inclined to the horizontal $\mathrm{z}=\mathrm{ax}$ and let us
consider a 2-D problem. Then continuity is simply $\mathrm{u}_{\mathrm{x}}+\mathrm{w}_{\mathrm{z}}=0$ and we can introduce a streamfunction ψ

$$
\mathrm{u}=-\frac{\partial \psi}{\partial \mathrm{z}}
$$

\{

$$
\mathrm{w}=+\frac{\partial \psi}{\partial \mathrm{x}}
$$

The incident wave, in terms of ψ, is:

$$
\psi_{\mathrm{I}}=\psi_{\mathrm{io}} \mathrm{e}^{\mathrm{i}\left(k_{\mathrm{i}} \mathrm{x}+\mathrm{m}_{\mathrm{i}}^{\mathrm{Z}}-\omega_{\mathrm{i}}^{\mathrm{t})}\right.}
$$

and

$$
\psi_{\mathrm{R}}=\psi_{\mathrm{ro}} \mathrm{e}^{\mathrm{i}\left(\mathrm{k}_{\mathrm{r}} \mathrm{x}+\mathrm{m}_{\mathrm{r}} \mathrm{z}-\omega_{\mathrm{r}}^{\mathrm{r})}\right.}
$$

The total wave field in the reflection is

$$
\psi_{\text {Total }}=\psi_{\mathrm{I}}+\psi_{\mathrm{R}}
$$

and on $\mathrm{z}=\mathrm{ax} \quad \psi_{\mathrm{T}}=$ constant $=0$ without loss of generality. Then

$$
\begin{aligned}
& \psi_{i o} \mathrm{e}^{\mathrm{i}\left[\left(\mathrm{k}_{\mathrm{i}}+\mathrm{am}_{\mathrm{i}}\right) \mathrm{x}-\omega_{\mathrm{i}}^{\mathrm{t}]}\right.}+ \\
& +\psi_{\mathrm{ro}} \mathrm{e}^{\mathrm{i}\left[\left(\mathrm{k}_{\mathrm{r}}+\mathrm{am}_{\mathrm{r}}\right) \mathrm{x}-\omega_{\mathrm{r}} \mathrm{t}\right]} \equiv 0
\end{aligned}
$$

This is true only if

$$
\begin{aligned}
& \omega_{\mathrm{i}}=\omega_{\mathrm{r}} \\
& \mathrm{k}_{\mathrm{i}}+\mathrm{am}_{\mathrm{i}}=\mathrm{k}_{\mathrm{r}}+\mathrm{am}_{\mathrm{r}}->\quad \mathrm{k}_{\mathrm{i}}+\tan \alpha \mathrm{m}_{\mathrm{i}}=\mathrm{k}_{\mathrm{r}}+\tan \alpha \mathrm{m}_{\mathrm{r}} \\
& \text { as } \mathrm{a}=\tan \alpha \\
& \text { or } \mathrm{k}_{\mathrm{i}} \cos \alpha+\mathrm{m}_{\mathrm{i}} \sin \alpha=\mathrm{k}_{\mathrm{r}} \cos \alpha+\mathrm{m}_{\mathrm{r}} \sin \alpha
\end{aligned}
$$

or $\quad \overrightarrow{\mathrm{K}}_{\mathrm{i}} \cdot \hat{\mathrm{i}}_{\mathrm{B}}=\overrightarrow{\mathrm{K}}_{\mathrm{r}} \cdot \hat{\mathrm{i}}_{\mathrm{B}}$ if $\quad \hat{\mathrm{i}}_{\mathrm{B}}$ is the unit vector along $\mathrm{z}=\mathrm{ax}$
that is:

1. ω is conserved in the reflection process
-> the angle of $\overrightarrow{\mathrm{K}}_{\mathrm{r}}$ and $\overrightarrow{\mathrm{K}}_{\mathrm{i}}$ to the horizontal must have the same magnitude θ
2. The component of \vec{K}_{i} and \vec{K}_{r} along the slope must be the same

Let us consider the geometry of the process:

Figure by MIT OpenCourseWare.
$\mathrm{x}=\mathrm{z} \tan \theta=\mathrm{R} \mathrm{z} \quad \tan \theta=\mathrm{R}$
$\theta=\tan ^{-1} \mathrm{R}$
$\alpha=\tan ^{-1} \mathrm{a}$
The projection of $\overrightarrow{\mathrm{K}}_{\mathrm{i}}, \overrightarrow{\mathrm{K}}_{\mathrm{r}}$ along the reflecting wall $\mathrm{z}=\mathrm{ax}$ must be equal:

$$
\left|\overrightarrow{\mathrm{K}}_{\mathrm{i}}\right| \cos \left[\tan ^{-1} \mathrm{R}-\tan ^{-1} \mathrm{a}\right]=\left|\overrightarrow{\mathrm{K}}_{\mathrm{r}}\right| \cos \left[\tan ^{-1} \mathrm{R}+\tan ^{-1} \mathrm{a}\right]
$$

We can evaluate this expression by geometry and the law of cosines:

$$
\cos \gamma=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}-\mathrm{c}^{2}}{2 \mathrm{ab}}
$$

Figure by MIT OpenCourseWare.

$$
\begin{aligned}
& \cos \left(\tan ^{-1} R-\tan ^{-1} a\right)=\frac{1+R^{2}+1+a^{2}-(R-a)^{2}}{2 \sqrt{1+R^{2}} \sqrt{1+a^{2}}}=\frac{1+a R}{\sqrt{1+R^{2}} \sqrt{1+a^{2}}} \\
& \cos \left(\tan ^{-1} R+\tan ^{-1} a\right)=\frac{1+a^{2}+1+R^{2}-(R+a)^{2}}{2 \sqrt{1+R^{2}} \sqrt{1+a^{2}}}=\frac{1-a R}{\sqrt{1+R^{2}} \sqrt{1+a^{2}}}
\end{aligned}
$$

Figure by MIT OpenCourseWare.

And the above expression becomes:

$$
\left|\overrightarrow{\mathrm{K}}_{\mathrm{i}}\right| \frac{1+\mathrm{aR}}{\sqrt{1+\mathrm{R}^{2}} \sqrt{1+\mathrm{a}^{2}}}=\left|\overrightarrow{\mathrm{K}}_{\mathrm{R}}\right| \frac{1-\mathrm{aR}}{\sqrt{1+\mathrm{R}^{2}} \sqrt{1+\mathrm{a}^{2}}}
$$

or

$$
\left.\left|\overrightarrow{\mathrm{K}}_{\mathrm{R}} \models \frac{1+\mathrm{aR}}{1-\mathrm{aR}}\right| \overrightarrow{\mathrm{K}}_{\mathrm{i}} \right\rvert\,
$$

or

$$
\begin{gathered}
\mathrm{k}_{\mathrm{R}}=\left(\frac{1+\mathrm{aR}}{1-\mathrm{aR}}\right) \mathrm{k}_{\mathrm{i}} \\
\mathrm{~m}_{\mathrm{r}}=-\left(\frac{1+\mathrm{aR}}{1-\mathrm{aR}}\right) \mathrm{m}_{\mathrm{i}}
\end{gathered}
$$

The reflected wave number $\left|\overrightarrow{\mathrm{K}}_{\mathrm{R}}\right|>\left|\overrightarrow{\mathrm{K}}_{\mathrm{i}}\right|$

$$
=>\lambda_{R}<\lambda_{i}
$$

The wavelength shortens as a consequence of the reflection process.
Consider now the changes in group velocity $\overrightarrow{\mathrm{C}}_{\mathrm{g}}$
For the group velocity the component conserved is the component perpendicular to the wall as there cannot be an energy flux into the wall

$$
\begin{gathered}
\left.\mathrm{C}_{\mathrm{gi}}\right|_{\perp \text { wall }}-\mathrm{C}_{\mathrm{gr}} L_{\perp \text { wall }}=0 \\
\left.\mathrm{C}_{\mathrm{gi}}\right|_{\perp \text { wall }}=\left.\mathrm{C}_{\mathrm{gr}}\right|_{\perp \text { wall }}
\end{gathered}
$$

Figure by MIT OpenCourseWare.
or

$$
\begin{gathered}
\left|\overrightarrow{\mathrm{c}}_{\mathrm{gi}}\right| \sin \left(\tan ^{-1} \mathrm{R}+\tan ^{-1} \mathrm{a}\right)=\left|\overrightarrow{\mathrm{c}}_{\mathrm{gr}}\right| \sin \left(\tan ^{-1} \mathrm{R}-\tan ^{-1} \mathrm{a}\right) \\
\overrightarrow{\mathrm{c}}_{\mathrm{gr}}=-\overrightarrow{\mathrm{c}}_{\mathrm{gi}} \frac{(1+\mathrm{aR})}{(1-\mathrm{aR})}
\end{gathered}
$$

While λ shortens in the reflection process, $\quad \overrightarrow{\mathrm{c}}_{\mathrm{gr}}$ increases
Notice that if aR->1 the reflected $\overrightarrow{\mathrm{c}}_{\mathrm{gr}}$ is very large. What does this mean? It means that the bottom coincides with the outgoing characteristics: $\mathrm{z}=\mathrm{ax}->\mathrm{z}=\mathrm{R}^{-1} \mathrm{x}$.

As aR $\rightarrow 1, \vec{c}_{\mathrm{gr}}$ is very large, k_{r} is very large: the reflected wave is very small. The present inviscid analysis fails.

Rules for sloping bottom:

1. Angle θ of $\overrightarrow{\mathrm{c}}_{\mathrm{gi}}, \overrightarrow{\mathrm{c}}_{\mathrm{gr}}$ with the vertical must be the same.
2. The components \perp to bottom must be equal

MIT OpenCourseWare
http://ocw.mit.edu

12.802 Wave Motion in the Ocean and the Atmosphere

 Spring 2008For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

