4. Energy equation for surface gravity waves

Equations of Motion

$$
\begin{array}{ll}
\rho \frac{\mathrm{d} \overrightarrow{\mathrm{u}}}{\mathrm{dt}}=-\underline{\nabla} p-g \rho \hat{\mathrm{k}} & \text { (1) } \\
\rho=\mathrm{constant} \\
\underline{\nabla} \bullet \overrightarrow{\mathrm{u}}=\mathrm{o} & \text { (2) } \tag{2}
\end{array}
$$

Multiply (1) by $\overrightarrow{\mathrm{u}}$

$$
\left(\frac{1}{2} \rho \overrightarrow{\mathrm{u}} \bullet \overrightarrow{\mathrm{u}}\right)_{\mathrm{t}}+\overrightarrow{\mathrm{u}} \bullet \nabla \mathrm{p}+\mathrm{g} \rho \mathrm{w}=\mathrm{o}
$$

In the linearized case, at every level $z \quad w=\frac{\partial z}{\partial t}$ and

$$
\left[\frac{1}{2} \rho \overrightarrow{\mathrm{u}} \bullet \overrightarrow{\mathrm{u}}+\mathrm{g} \rho \mathrm{z}\right]_{\mathrm{t}}+\underline{\nabla} \bullet(\mathrm{p} \overrightarrow{\mathrm{u}})=0
$$

or rate of change (kinetic + potential energy) + divergence (energy flux) $=0$

Figure by MIT OpenCourseWare.

Figure 1.

If we integrate from $z=-D$ to $z=\eta$, we obtain the kinetic and potential energy and energy flux per unit horizontal area:

$$
\begin{gathered}
\frac{\partial}{\partial \mathrm{t}}\left[\int_{-D}^{\eta} \frac{1}{2} \rho \overrightarrow{\mathrm{u}} \bullet \overrightarrow{\mathrm{u} d z}+\frac{1}{2} \rho g \eta^{2}\right]+\underline{\nabla}_{\mathrm{H}} \bullet \int_{-\mathrm{D}}^{\eta}\left(\overrightarrow{\mathrm{u}}_{\mathrm{H}} \mathrm{p}\right) \mathrm{dz}=0 \\
\text { as } \mathrm{p}(\eta)=0 \\
\text { and } \mathrm{w}=0 \text { at } \mathrm{z}=-\mathrm{D} \\
\underline{\nabla}_{H}=\hat{\mathrm{i}} \frac{\partial}{\partial \mathrm{x}}+\mathrm{J} \frac{\partial}{\partial \mathrm{y}} ; \int_{-\mathrm{D}}^{\eta} g \rho \mathrm{zdz}=\left.\frac{1}{2} g \rho \frac{z^{2}}{2}\right|_{-D} ^{\eta}=\frac{1}{2} g \rho\left(\eta^{2}-D^{2}\right)
\end{gathered}
$$

$$
\text { or } \frac{\partial}{\partial \mathrm{t}}[\mathrm{KE}+\mathrm{PE}]+\underline{\nabla}_{\mathrm{H}} \bullet \mathrm{E}_{\mathrm{flux}}=0
$$

Rate of change = horizontal divergence of wave energy flux
Bar denotes the quantities per unit horizontal area
Notice:

1) In the expression for the integrated potential density:
$\frac{1}{2} \rho g\left(\eta^{2}-D^{2}\right)$ we have neglected the term proportional to D^{2} as an irrelevant constant and $\frac{\partial \mathrm{D}^{2}}{\partial \mathrm{t}}=0$.
2) In the integral for the kinetic energy we can integrate only to $z=0$. In fact we are calculating energy to second order in the wave amplitude. To do this, for PE, we must integrate to η to obtain $\eta^{2}\left(\equiv \mathrm{a}^{2}\right)$. In the KE, the integral to η would include a correction of $0\left(u^{2} \eta\right) \equiv o\left(a^{3}\right)$, hence negligible. Let us now consider specifically the surface gravity wave field in one horizontal dimension ($\mathrm{x}, \mathrm{z}, \mathrm{t}$):

$$
\begin{aligned}
& \eta=a \cos (k x-\omega t) \quad \omega^{2}=g k \tanh (k D) \\
& \phi=\frac{a w}{k \sinh (k D)} \cosh k(z+D) \cos (k x-\omega t) \\
& p=-\rho g z+\frac{\rho \omega^{2} a}{k \sinh (k D)} \cosh k(z+D) \cos (k x-\omega t) \\
& u=\frac{a \omega}{\sinh (k D)} \cosh k(z+D) \cos (k x-\omega t) \\
& w=\frac{a \omega}{\sinh (k D)} \sinh k(z+D) \sin (k x-\omega t)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{PE}=\frac{1}{2} \rho \mathrm{ga}^{2} \cos ^{2}(\mathrm{kx}-\omega \mathrm{t}) \\
& \mathrm{KE}=+\int_{-\mathrm{D}}^{0} \frac{\rho\left(\mathrm{u}^{2}+\mathrm{w}^{2}\right)}{2} \mathrm{dz}=\int_{-\mathrm{D}}^{0} \frac{\rho \mathrm{a}^{2} \omega^{2}}{2}\left[\begin{array}{l}
\cos ^{2}(\mathrm{kx}-\omega \mathrm{t}) \frac{\cosh ^{2} \mathrm{k}(\mathrm{z}+\mathrm{D})}{\sinh ^{2}(\mathrm{kD})} \\
\left.\sin ^{2}(\mathrm{kx}-\omega \mathrm{t}) \frac{\sinh ^{2} \mathrm{k}(\mathrm{z}+\mathrm{D})}{\sinh ^{2}(\mathrm{kD})}\right] \mathrm{dz}
\end{array} .\right.
\end{aligned}
$$

Let us now average both quantities over a wave period, indicated by $<>$
$<$ PE $>=\frac{1}{4} \rho g \mathrm{a}^{2}$
$<\mathrm{kE}>=\rho \mathrm{a}^{2} \omega^{2} \int_{-\mathrm{D}}^{\mathrm{o}} \frac{1}{4} \frac{\cosh 2 \mathrm{k}(\mathrm{z}+\mathrm{D})}{\sinh ^{2}(\mathrm{kD})} \mathrm{dz}=\quad \quad$ as $\omega^{2}=\operatorname{gktanh}(\mathrm{kD})$

$$
=\rho \mathrm{a}^{2} \omega^{2} \frac{1}{8} \frac{\sinh (2 \mathrm{kD})}{\mathrm{k} \sinh ^{2}(\mathrm{kD})}=
$$

$=\rho \mathrm{a}^{2} g \tanh (k D) \frac{\sinh (k D) \cosh (k D)}{4 \sin ^{2}(k D)}=\frac{1}{4} \rho g a^{2}$
Averaged over a wave period
$<\mathrm{PE}>\equiv<\mathrm{kE}>$ Equipartition of wave energy between potential and kinetic like in the oscillator problem. η is a linear oscillator!

And $<\mathrm{E}_{\text {total }}>=<\mathrm{KE}>+<\mathrm{PE}>=\frac{\rho \mathrm{ga}^{2}}{2}$
If we now calculate the energy flux vector and average it over one wave period we get:

$$
\begin{gathered}
\left.\left\langle\mathrm{E}_{\text {flux }}\right\rangle=<\int_{-\mathrm{D}}^{0}(\mathrm{up}) \mathrm{dz}\right\rangle= \\
=\frac{1}{2} \operatorname{\rho ga}^{2}\left(\frac{\omega^{2}}{\mathrm{gK}} \operatorname{coth}(\mathrm{kD}) \mathrm{c}\left[\frac{1}{2}+\frac{\mathrm{kD}}{\sinh (2 \mathrm{kD})}\right]\right.
\end{gathered}
$$

$$
\text { But } \quad c_{g}=\frac{\partial \omega}{\partial k}=\mathrm{c}\left\lfloor\frac{1}{2}+\frac{\mathrm{kD}}{\sinh (\mathrm{kD})}\right\rfloor
$$

Thus the period average of the energy equation is:

$$
\frac{\partial}{\partial \mathrm{t}}<\mathrm{E}>+\underline{\nabla}_{\mathrm{H}} \bullet\left[\overrightarrow{\mathrm{c}}_{\mathrm{g}}<\mathrm{E}>\right]=0
$$

Thus we have the important result that the energy in the wave propagates with the group velocity. If the medium is homogeneous, $\overrightarrow{\mathrm{c}}_{\mathrm{g}}=\frac{\partial \omega}{\partial \overrightarrow{\mathrm{k}}}(|\overrightarrow{\mathrm{k}}|)$ only and we can write

$$
\frac{\partial}{\partial \mathrm{t}}<\mathrm{E}>+\overrightarrow{\mathrm{c}}_{\mathrm{g}} \bullet \nabla_{\mathrm{H}}<\mathrm{E}>=0
$$

For an observer moving horizontally with the group velocity the energy averaged over one phase of the wave is constant.

Dispersion relationship for waves moving on a current

Suppose I have a wave encountering a current $\overrightarrow{\mathrm{U}}(\mathrm{x}, \mathrm{y})$, the dispersion relationship is modified by the Doppler shift becoming

$$
\sigma=\overrightarrow{\mathrm{k}}(\mathrm{x}, \mathrm{y}) \bullet \overrightarrow{\mathrm{U}}(\mathrm{x}, \mathrm{y})+\omega \quad \text { where } \omega=\sqrt{\mathrm{gk} \tanh (1 \mathrm{k})) \mathrm{D}} \text { is the intrinsic frequency }
$$

Consider in fact the 1-D example

$$
\mathrm{U}=\mathrm{U}(\mathrm{x}) \text { only. Then } \sigma=\mathrm{kU}+\omega \text {. }
$$

MIT OpenCourseWare
http://ocw.mit.edu

12.802 Wave Motion in the Ocean and the Atmosphere

 Spring 2008For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

