## Slowly varying media: Ray theory

Suppose the medium is not homogeneous (gravity waves impinging on a beach, i.e. a varying depth). Then a pure plane wave whose properties are constant in space and time is not a proper description of the wave field.

However, if the changes in the background occur on scales that are long and slow compared to the wavelength and period of the wave, a plane wave solution may be locally appropriate. (Fig. 2.1) This means: $\lambda \ll \mathrm{L}_{\mathrm{m}}$ where $\mathrm{L}_{\mathrm{m}}$ is the length scale over which the medium changes. Consider the local plane wave

$$
\phi(\overrightarrow{\mathrm{x}}, \mathrm{t})=\mathrm{a}(\overrightarrow{\mathrm{x}}, \mathrm{t}) \mathrm{e}^{\mathrm{i} \theta(\overrightarrow{\mathrm{x}}, \mathrm{t})}
$$

a varies on the scale $L_{m}$ while $\theta$ varies on the scale $\lambda$.

$$
\begin{array}{r}
\frac{\partial \theta}{\partial \mathrm{x}_{\mathrm{i}}}=0\left(\frac{1}{\lambda}\right) ; \frac{1}{\mathrm{a}} \frac{\partial \mathrm{a}}{\partial \mathrm{x}_{\mathrm{i}}}=0\left(\frac{1}{\mathrm{~L}_{\mathrm{m}}}\right) \\
\Rightarrow \underline{\nabla} \phi=\mathrm{ae}^{\mathrm{i} \theta} \bullet \underline{\nabla} \theta+0\left(\frac{\lambda}{\mathrm{~L}_{\mathrm{m}}}\right) \\
\theta=\overrightarrow{\mathrm{k}} \bullet \overrightarrow{\mathrm{x}}-\mathrm{wt}
\end{array}
$$

with
Define the local wavenumber and the local frequency as:

$$
\overrightarrow{\mathrm{k}}=\left.\underline{\nabla} \theta\right|_{\mathrm{t}} \quad \omega=-\left.\frac{\partial \theta}{\partial \mathrm{t}}\right|_{\mathrm{x}}
$$

From these definitions it follows that:
$\underline{\nabla} \times \overrightarrow{\mathrm{k}}=0$ the local wave number is irrotational.
Conservation of crests in a slowly varying medium.
Suppose we go from point A to point $B$ over the curve $C_{1}$.


Figure by MIT OpenCourseWare.
Figure 1
slowly varying wave fronts
The number of wave cress we pass along $\mathrm{C}_{1}$ is

$$
\mathrm{n}_{\mathrm{C}_{1}}=\frac{1}{2 \pi} \int_{\mathrm{A}}^{\mathrm{B}} \overrightarrow{\mathrm{k}} \bullet \mathrm{~d} \overrightarrow{\mathrm{~s}}=\frac{1}{2 \pi} \int_{\mathrm{c}_{1}} \overrightarrow{\mathrm{k}} \bullet \mathrm{~d} \overrightarrow{\mathrm{~s}}
$$

The number of wave crests we pass along $\mathrm{C}_{2}$ is

$$
\mathrm{n}_{\mathrm{c}_{2}}=\frac{1}{2 \pi} \int_{\mathrm{A}}^{\mathrm{B}} \overrightarrow{\mathrm{k}} \bullet \mathrm{~d} \overrightarrow{\mathrm{~s}}=\frac{1}{2 \pi} \int_{\mathrm{c}_{2}} \overrightarrow{\mathrm{k}} \bullet \mathrm{~d} \overrightarrow{\mathrm{~s}}
$$

Before for plane waves $\omega=\Omega(\overline{\mathrm{k}})$ only, now $\omega=\Omega(\overrightarrow{\mathrm{k}}, \overrightarrow{\mathrm{x}}, \mathrm{t})$.
As $(\omega, \overrightarrow{\mathrm{k}})$ are slowly varying functions of space/time, the dispersion relation is explicitly dependent on space/time. Now we can introduce the group velocity in another way

$$
\begin{aligned}
\left.\frac{\partial \omega}{\partial \mathrm{t}}\right|_{\overrightarrow{\mathrm{x}}}= & \left.\frac{\partial \Omega}{\partial \mathrm{t}}\right|_{\overrightarrow{\mathrm{k}}, \overrightarrow{\mathrm{x}}}+\left.\left.\frac{\partial \Omega}{\sum_{\mathrm{i}}}\right|_{\overrightarrow{\mathrm{x}}, \mathrm{t}} \frac{\partial \mathrm{k}_{\mathrm{i}}}{\partial \mathrm{t}}\right|_{\overrightarrow{\mathrm{x}}}= \\
& =\left.\frac{\partial \Omega}{\partial \mathrm{t}}\right|_{\overrightarrow{\mathrm{k}}, \overrightarrow{\mathrm{x}}}+\left.\mathrm{c}_{\mathrm{gi}} \frac{\partial \mathrm{k}_{\mathrm{i}}}{\partial \mathrm{t}}\right|_{\overrightarrow{\mathrm{x}}}
\end{aligned}
$$

Where we use the summation convention over repeated indices,
and $\quad \mathrm{c}_{\mathrm{gi}}=\frac{\partial \Omega}{\partial \mathrm{k}_{\mathrm{i}}} \quad$ by definition $\mathrm{i}=1,2,3=\mathrm{x}, \mathrm{y}, \mathrm{z}$

$$
\overrightarrow{\mathrm{c}}_{\mathrm{g}}=\nabla_{\overrightarrow{\mathrm{k}}} \Omega \quad \text { group velocity }
$$

The difference is:

$$
\begin{array}{r}
\mathrm{n}_{\mathrm{c}_{1}}-\mathrm{n}_{\mathrm{C}_{2}}=\frac{1}{\pi}\left[\left(\int_{\mathrm{c}_{1} \mathrm{c}_{2}}-\int\right) \overrightarrow{\mathrm{k}} \bullet \mathrm{~d} \overrightarrow{\mathrm{~s}}\right]=\frac{1}{\pi}\left[\left(\int_{\mathrm{c}_{1}-\mathrm{c}_{2}}+\int \overrightarrow{\mathrm{k}} \bullet \mathrm{~d} \overrightarrow{\mathrm{~s}}\right]=\frac{1}{2 \pi} \oint_{\mathrm{C}_{\text {total }}} \overrightarrow{\mathrm{k}} \bullet \mathrm{~d} \overrightarrow{\mathrm{~s}}=\iint_{\mathrm{A}} \underline{\nabla \mathrm{x}} \overrightarrow{\mathrm{k}} \bullet \hat{\mathrm{n}} \mathrm{dA} \equiv 0\right. \\
\hat{\mathrm{n}}=\text { unit vector normal to C }
\end{array}
$$

We have used Stokes theorem relating the line integral of the tangential component of $\vec{k}$ to the area integral of its curl over the area bounded by the closed contour C . The increase of phase is the same on $C_{1}$ and $C_{2}$. This means the number of crests along $C_{1}$ is the same as the number of crests along $\mathrm{C}_{2}$, that is the number of cress inside the area A is conserved. Crests are neither created nor destroyed inside A. The crests have no ends, so the number of crests within a wave group will be the same for all time. This is obviously true only for slowly varying plane waves.

From the definition of $\vec{k}$ and $w$ it follows:

$$
\begin{equation*}
\frac{\partial \overrightarrow{\mathrm{k}}}{\partial \mathrm{t}}+\underline{\nabla} \omega=0 \tag{1}
\end{equation*}
$$

We have seen that the number of crests we cross from $A$ to $B$ is the same along any path connecting A and B . Then:

$$
\begin{gathered}
\mathrm{n}=\frac{1}{2 \pi} \int_{\mathrm{A}}^{\mathrm{B}} \overrightarrow{\mathrm{k}} \bullet \mathrm{~d} \overrightarrow{\mathrm{~s}} \\
\frac{\partial \mathrm{n}}{\partial \mathrm{t}}=\frac{1}{2 \pi} \int_{\mathrm{A}}^{\mathrm{B}} \frac{\partial \overrightarrow{\mathrm{k}}}{\partial \mathrm{t}} \bullet \mathrm{~d} \overrightarrow{\mathrm{~s}}=-\frac{1}{2 \pi} \int_{\mathrm{A}}^{\mathrm{B}} \underline{\nabla} \omega \bullet \mathrm{~d} \overrightarrow{\mathrm{~s}}=\frac{1}{2 \pi}(\omega(\mathrm{~A})-\omega(\mathrm{B})]
\end{gathered}
$$

This says that the rate of change of the number of wave crests between $A$ and $B$ is equal to the frequency of crest inflow at A minus the frequency crest outflow at B.

Crests are neither created nor destroyed in the smoothly varying function $\phi$. The number in any local region increases or decreases solely due to the arrival of pre-existing crests at A , not to the creation or destruction of existing crests.

We now introduce the dynamics by asserting that the wavenumber and frequency must be related by a dispersion relation in the same way as for a plane wave.

Since by eq. (1)
$\frac{\partial \mathrm{k}_{\mathrm{i}}}{\partial \mathrm{t}}=-\frac{\partial \omega}{\partial \mathrm{x}_{\mathrm{i}}} \quad \quad$ we have
$\frac{\partial \omega}{\partial t}=\frac{\partial \Omega}{\partial t}-\mathrm{c}_{\mathrm{g}_{\mathrm{i}}} \frac{\partial \omega}{\partial \mathrm{x}_{\mathrm{i}}} \quad$ or
$\frac{\partial \omega}{\partial \mathrm{t}}+\overrightarrow{\mathrm{c}}_{\mathrm{g}} \bullet \underline{\nabla} \omega=\left.\frac{\partial \Omega}{\partial \mathrm{t}}\right|_{\overrightarrow{\mathrm{k}}, \overrightarrow{\mathrm{x}}} \quad$ (1) equation for $\omega$
Similarly from (1)

$$
\begin{gather*}
\left.\frac{\partial \mathrm{k}_{\mathrm{i}}}{\partial \mathrm{t}}\right|_{\overrightarrow{\mathrm{x}}}+\left.\frac{\partial \Omega}{\partial \mathrm{x}_{\mathrm{i}}}\right|_{\mathrm{k}, \mathrm{t}}+\left.\frac{\partial \Omega}{\partial \mathrm{k}_{\mathrm{j}}}\right|_{\overrightarrow{\mathrm{x}}, \overrightarrow{\mathrm{t}}} \frac{\partial \mathrm{k}_{\mathrm{j}}}{\partial \mathrm{x}_{\mathrm{i}}}=0 \\
\frac{\partial \mathrm{k}_{\mathrm{i}}}{\partial \mathrm{t}}+\frac{\partial \Omega}{\partial \mathrm{kj}} \frac{\partial \mathrm{k}_{\mathrm{j}}}{\partial \mathrm{x}_{\mathrm{i}}}=-\frac{\partial \Omega}{\partial \mathrm{x}_{\mathrm{i}}} \quad \text { or } \\
\frac{\partial \overrightarrow{\mathrm{k}}}{\partial \mathrm{t}}+\overrightarrow{\mathrm{c}}_{\mathrm{g}} \bullet \underline{\mathrm{k}}=-\left.\underline{\nabla} \Omega\right|_{\mathrm{k}, \mathrm{t}} \tag{2}
\end{gather*}
$$

The "ray equation" gives the velocity at which the wave packet, or wave group, moves:

$$
\overrightarrow{\mathrm{c}}_{\mathrm{g}}=\frac{\mathrm{d} \overline{\mathrm{x}}}{\mathrm{dt}} \quad \text { or } \quad c_{\mathrm{gx}}=\frac{\mathrm{dx}}{\mathrm{dt}} ; \quad c_{\mathrm{gy}}=\frac{\mathrm{dy}}{\mathrm{dt}}
$$

in two dimensions. Then the ray path in the ( $\mathrm{x}, \mathrm{y}$ ) plane is

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{c}_{\mathrm{gy}}}{\mathrm{c}_{\mathrm{gx}}} \quad \frac{\mathrm{~d}}{\mathrm{dt}}=\frac{\partial}{\partial \mathrm{t}}+\overrightarrow{\mathrm{c}}_{\mathrm{g}} \bullet \underline{\nabla}
$$

$$
\begin{align*}
& \overrightarrow{\mathrm{c}}_{\mathrm{g}}=\frac{\mathrm{d} \overrightarrow{\mathrm{x}}}{\mathrm{dt}}  \tag{I}\\
& \frac{\partial \omega}{\partial \mathrm{t}}+\mathrm{c}_{\mathrm{g}} \bullet \underline{\nabla} \omega=\left.\frac{\partial \Omega}{\partial \mathrm{t}}\right|_{\mathrm{t}, \overrightarrow{\mathrm{x}}}  \tag{II}\\
& \frac{\partial \overrightarrow{\mathrm{k}}}{\partial \mathrm{t}}+\overrightarrow{\mathrm{c}}_{\mathrm{g}} \bullet \underline{\nabla \mathrm{k}}=-\left.\underline{\nabla} \Omega\right|_{\mathrm{k}, \mathrm{t}} \tag{III}
\end{align*}
$$

$\Omega=\Omega(\vec{k}, \overrightarrow{\mathrm{x}}, \mathrm{t})$ has an explicit parametric dependence on ( $\overrightarrow{\mathrm{x}}, \mathrm{t}$ ), for instance when waves enter in water of changing depth. The ray equations give the evolution of the local wavenumber $\overrightarrow{\mathrm{k}}$ and the local frequency $\omega$ as we move along the ray, i.e. we move with the wave packet at the local group velocity $\vec{c}_{\mathrm{g}}$. Is a plane wave a particular solution of the ray theory formulation? Suppose the medium is homogeneous, no changes in ( $\overrightarrow{\mathrm{x}}, \mathrm{t}$ ) $\omega=\Omega(\overrightarrow{\mathrm{k}})$ only

Solution: plane wave $\phi=a e^{i(\vec{k} \bullet \overrightarrow{\mathrm{x}}-\omega \mathrm{t})}$
where $(\vec{k}, \omega)$ do not change but are constant in space
Initial condition $\phi(\overrightarrow{\mathrm{x}})=\mathrm{ae} \mathrm{i}^{\mathrm{i} \cdot \overrightarrow{\mathrm{x}}}$ gives $\overrightarrow{\mathrm{k}}(\mathrm{t}=0)$
As $\quad \frac{\partial \overrightarrow{\mathrm{k}}}{\partial \mathrm{x}_{2}} \equiv 0 \quad$ and $\quad \frac{\partial \Omega}{\partial \mathrm{x}_{\mathrm{i}}} \equiv 0$
The ray equation (III) gives
$\frac{\partial \vec{k}}{\partial \mathrm{t}}=0$ : $\overrightarrow{\mathrm{k}}$ never changes along the ray and remains equal to $\vec{k}(\mathrm{t}=0)$.
$\omega=\Omega(\overrightarrow{\mathrm{k}})$ gives $\omega$ at $\mathrm{t}=0$

$$
\begin{aligned}
& \text { As } \frac{\partial \omega}{\partial \mathrm{x}_{\mathrm{i}}}=0 \quad ; \quad \frac{\partial \Omega}{\partial \mathrm{t}}=0 \quad \text { eq. (II) gives } \\
& \frac{\partial \omega}{\partial \mathrm{t}}=0 \quad \omega=\omega(\mathrm{t}=0)
\end{aligned}
$$

The frequency never changes along the ray. Thus the plane wave solution in a homogeneous medium is entirely consistent with the ray theory formulation.

MIT OpenCourseWare
http://ocw.mit.edu

### 12.802 Wave Motion in the Ocean and the Atmosphere

 Spring 2008For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

