
 Waves are not easy to define, so What is a Wave?  Whitham defines a wave as “a 

recognizable signal that is transferred from one part of a medium to another with 

recognizable velocity of propagation”.  A very broad definition, encompassing an 

enormous range of dynamical systems. 

 In this course we will consider a number of different types of wave and wave 

motions occurring in the ocean and the atmosphere, at many different time and space 

scales.  In general, wave-like fluctuations are not exact solutions of the equations of 

motion, but often represent good approximate solutions of them.  Therefore the first step 

is the appropriate simplification of the equations of motion, which basically involves 

linearization about some basic (atmosphere, ocean) state at rest or of quasi-steady motion.  

If the equations are linear, we can superimpose solutions of the equations in order to find 

solutions to more general initial or boundary conditions.  We shall study first such linear 

waves before relaxing the linearization condition. 

Wave Kinematics – definitions 

Plane Waves 

 The simplest form of a wave has periodic variations both in space and time, and 

the solution to the equations of motion is in the form of a plane wave.  This requires that 

the medium be locally (i.e. on the scale of the wave) homogeneous.  Then if φ is a field 

variable (pressure, velocity, etc.) 

  φ(
r 
x ,t) = Re[Aei(

r 
k •r x −ωt) ]   where Re is the real part 

  
=| A | cos(

r 
k •

r 
x − ωt + tan−1 ImA

Re A
)  

because As ω is a complex quantity has not only a real amplitude but also a phase factor 
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So it is much more convenient to work with the complex form and take the real part only 

at the end.  This is possible because we have linearized the equation of motion. 

Definitions 

•     = (x,y,z)  (east, south, up) 
r 
x

•    = wavenumber (k, l, m) 
r 
k 

 • phase    θ =
r 
k •

r 
x − ωt

I use this convention because if ω > 0 wave “crests and troughs” move in the direction 

of   .  Surfaces of constant phase: 
r 
k 

  θ =
r 
k •

r 
x − ωt = kx + ly − ωt = constant  

in two-dimension are planes normal to  
r 
k  and moving outward along     as t increases.     

r 
k
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Figure 1

Figure by MIT OpenCourseWare.



 

If s is the scalar distance along    
r 
k 

  
r 
k •

r 
x =|

r 
K | s 

Is a pure plane wave even achieved in the real world?  Looking at swell on a beach it 

appears to be the zero-order description of the wave field. 

 The plane wave is a spatially periodic function: 

  φ(|
r 
k | s) = φ(|

r 
k |[s + λ])      where |

r 
k | λ = 2π   as 

  ei(|
r 
k |s) = ei(|

r 
k |s+2π)      ei(2π) =1 

So  
  
λ =

2π
|
r 
k |

 is the wavelength, i.e. the distance along the wave vector between two points 

with the same phase (Fig. 2). 
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Figure 2

Figure by MIT OpenCourseWare.



At any fixed position the rate of change of the phase with time is  ∂θ
∂t

= −ω  

How long do we have to wait until the same phase   appears?  This shortest time is  

ωT = 2π →  T =
2π
ω

 

T is the wave period 

As T =
1
f

  the frequency f =
ω
2π

; ω = 2πf  the circular frequency.  

The phase speed is the speed at which phase planes move along    , (the speed of 

propagation of phase along   )  

r 
k

r 
k 

 
c =

λ
T

=
2π
|
r 
k |

•
ω
2π

=
ω
|
r 
k |

 

which is not a vector.  In fact, in two-dimensions the phase speed in x-direction is defined 

so that, at a fixed y and at constant θ:    

dθ = 0 = k dx- ωdt ⇒   cx =
dx
dt

=
ω
k

= −
∂θ /∂t
∂θ /∂x

 

So cx is not c cos θ  (not a vector) but 

  

c
cosθ

=
(ω / |

r 
k |)

(k / |
r 
k |)

=
ω
k

 

cx = ω
k

 

cy = ω
l

 

cz = ω
m
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Fundamental kinematic equations 

k = ∇θ    →  spatial  increase  of phase

ω = −
∂θ
∂t

   →  temporal  decrease  of  phase
 

 

The wave     is a traveling plane wave.  The superposition of two oppositely 

travelling plane (ω>0) waves: 

Aei(
r 
k •r x −ωt)

  Aei(
r 
k •r x −ωt) + Aei(−

r 
k •r x −ωt) = 2Ae−iωt cos(

r 
k •

r 
x ) 

is a standing wave because crests and troughs do not propagate with time 

~o~o~o~ 

The above is kinematics.  In all physical problems, the dynamics impose a functional 

relation between the wave vector and the frequency. This is the dispersion relation which 

can be written as 

ω = Ω  (
r 
k )  

which is obtained by requiring the plane wave to be the solution of the linearized, 

dissipationless equations of motion.  The general solution is a superposition of the 

individual plane waves. 

 For instance φt + cφx = 0  ei(kx−ωt)  ⇒ ω = Ω = ck                        

The dispersion relation shows how each individual wave in the superposition moves with 

respect to the other ones, i.e. how from an initial localized package they disperse.  Waves 

are non-dispersive or dispersionless when all waves move with the same phase speed.  

The package does not change.  If the phase speed depends upon the wavenumber and 
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direction then the waves travel each with a different phase and are dispersive, i.e. they do 

not remain together while propagating through the medium. 

Linear superposition of plane waves 

 In a homogenous medium the general solution is a Fourier integral, which 

amounts to summing an infinite number of plane waves.  If the dispersion relation has n-

branches (most general case) 

ω = Ωj  (
r 
k )    j = 1, …, n 

Then n-initial conditions are required to solve an initial value problem. 

 This in general defines a “wave bracket” 

  

φ(
r 
x ,t) = −∞

+∞∫∫∫
j=1

n
∑ Aj(

r 
k )ei[

r 
k •r x −Ω j (

r 
k )t ]d

r 
k  

where the Aj  ) are determined by the initial condition.  If n = 1, we are in one 

dimension 

(
r 
k )

ω = Ω(k) 

φ(x,t) = A(k)e
−∞

+∞
∫

i[kx−Ω(k)t ]
dk  

If φ(x,o), the initial condition, is given: 

φ(x,o) = A(k)eikx

−∞

+∞
∫ dk ⇒ A(k) =

1
2π

φ(x,o)e−ikx

−∞

+∞
∫ dx 

If furthermore Ω = ck  then 

φ(x,t) = A(k)ei(kx−ckt)

−∞

+∞
∫ dk = A(k)eik(x−ct)dk = φ(x − ct,o)∫  
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The initial condition φ(x,o) translates towards x>o at speed c without changing shape.  

For homogeneous media, to solve for the wave packet: 

 1) Find the dispersion relation; 2) deduce the Aj  (
r 
k ) from the initial condition; 3) 

evaluate the Fourier integrals; 3) is most often difficult to evaluate. 

Useful approximate method: In general the envelope modulating the individual plane 

waves is a wave packet comprising many individual plane waves with nearby wave-

numbers and phase speeds.  The “group velocity” is therefore the velocity of the “group” 

i.e. of the wave packet and we shall see it is the velocity with which energy (not phase) 

propagates.   

φ(x,o) = a(x)eikox

As a preview, let us consider a one-dimensional example with the special initial condition 

φ(x,0) = a(x)eikox     

 

k0 = dominant 
wavelength

a(x)

x

∆x >> k-1

2π/k0

0

 

This represents a slowly modulated plane wave with envelope a(x).  We can always write 

φ(x,0) = A(k)eikx

−∞

∞
∫ dk;   A(k) =

1
2π

φ(x,0)e−ikx

−∞

∞
∫ dx 

and so 

A(k) = a(x)ei(ko−k)x

∞

∞
∫ dx;   a(x) = A(k)e−i(k−ko)x

−∞

∞
∫ dk  
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Figure 3
Figure by MIT OpenCourseWare.



In this last integral, the contribution to the integral itself is mostly from the regions where 

the quantity (k0-k)x is small. In fact, where this quantity is large, ei(ko-k)x oscillates rapidly 

and the integrated parts cancel each other.  Moreover, a(x) = 0 for x >> Δx. So, A(k) is 

centered around k0 and peaked there for this special choice of  φ(x,o).   

 

k0

A(k)

 

The modulated plane wave is said to be a ‘narrow band signal’. 

 We can evaluate φ(x,t) by expanding Ω(k) in a Taylor series about ko: 

φ(x,t) = A(k)ei(kx−Ω(k)t)

−∞

∞
∫ dk  

~ A(k)edk

i(kx−Ω(ko)t−(k−ko)∂Ω
∂k

t)
k=k o

−∞

∞
∫

                       

 

~ A(k)edk

i(kx−Ω(ko)t−(k−ko)∂Ω
∂k

t)
k=k o

−∞

∞
∫ eikox−ikox
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Figure 4
Figure by MIT OpenCourseWare.



= ei[kox−Ω(ko)t ] A(k)edk

i(k−ko)(x−
∂Ω
∂k

t)
k=k o

−∞

∞
∫

              

 

as  a(x) =  A(k)ei(k−ko)

−∞

∞
∫ dk

 

That is 

φ(x,t) = ei[kox−Ω(ko)t ]a(x −
∂Ω
∂k

|k=ko
t)  

The modulating envelope moves at a velocity ∂Ω /∂k|k=ko
, defined by the dispersion 

relation .  This velocity is called the group velocity ω = Ω(k)

cg =
∂Ω
∂k

|k=ko
 

and is not, in general, equal to the phase speed c = ω/k of the modulated plane wave.  

Therefore, the dominant wavelength λ=2π/ko has two speeds associated with it.  They are 

the phase speed c=ω/ko and the group velocity cg =  ∂Ω/∂k|k=ko
.  The modulating envelope 

thus moves through the underlying plane wave rather than with it. 

 

 

Method of Stationary Phase 

 The restriction to narrow band processes is illustrative but not necessary.  

Consider more generally 

φ(x,t) = A(k)ei[kx−Ω(k)t ]

−∞

∞
∫ dk  
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Define 
θ(k;x,t) ≡ kx /t − Ω(k)    the phase 

Then 

φ(x,t) = A(k)eitθ(k;z,t)

−∞

∞
∫ dk  

Suppose the wave packet has a complicated shape; that is at long distance and time from 

the place of generation, the waves originally “packed” have dispersed and the rapid 

oscillations of eiθt as t  cancel each other like in figure 5.  This means that → +∞

lim      A(k)eiθtdk = 0
−∞

+∞
∫

t → ∞
 

Then there is very little contribution to φ(x,t) unless there is a point where θ(k,x,t) has no 

variation with k, that is there is a ko where the phase is  stationary and we can apply the 

method of stationary phase, i.e. expansion around ko: 

φ(x,t)~ A(ko)
−∞

+∞
∫ eit θ(ko)+θ' (ko)(k−ko)+θ''(ko) (ko−ko)2

2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥  

Then at a given (x,t) the greatest contribution to φ(x,t) is from the wave number ko where 

θ’(ko) ≡0. 
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As θ(k,x,t) = k x
t

− Ω(k) we have  ∂θ
∂k

|k=ko
=

x
t

−
∂Ω
∂k

|k=ko
= 0 which means that the 

wavenumber ko making the biggest contribution to  φ(k,t) is that for which 

∂Ω
∂k

|k=ko
=

x
t

= Cg 

 

The solution is then 

φ(x,t) = A(ko)eitθ(ko) e
i(k−ko)2 θ''(ko)t

2
−∞

+∞
∫ dk 

∂θ
∂k

|k=ko
= 0 
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Figure 5
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As
  

e−αz2

−∞

+∞
∫ = ( π

α
)1/ 2      with  z2 = (k − ko)2

       α =
θ' '(ko)t

2i

 

 

then  φ(x,t)~A(ko)eitθ(ko)[ 2πi
tθ' '(ko)

]1/2  

or  φ(x,t)~A(ko)ei[kox−Ω(ko)t ][ 2πi
tθ' '(ko)

]1/2 

The solution is a slowly-modulated plane wave whose wavenumber ko has cg = x/t. 

The solution is valid only for large t as it requires the rapid oscillation of eiθ(k)t to cancel 

out except those where cg =
∂Ω
∂k

≡
x
t

. 

 

12 



MIT OpenCourseWare 
http://ocw.mit.edu  
 
 
 
 
12.802 Wave Motion in the Ocean and the Atmosphere
Spring 2008
 
 
 
 
 
 
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu/
http://ocw.mit.edu/terms

