1. Consider the following linearized equations in 1 and 3 dimensions and impose a wave solution as shown:

$$
\begin{array}{cc}
\text { Linearized Equation } & \text { Plane wave } \\
\hline \phi_{t}+c \phi_{x}=0 & e^{i k x-i \omega t} \\
\phi_{t t}-c^{2} \phi_{x x}=0 & e^{i k x-i \omega t} \\
\phi_{t}+\vec{c} \cdot \nabla \phi=0 & \mathrm{e}^{i \mathrm{k} \cdot \vec{x}-\mathrm{i} \omega \mathrm{t}} \\
\phi_{t t}-c^{2} \nabla^{2} \phi=0 & e^{i \vec{k} \cdot \vec{x}-i \omega t} \\
\nabla^{2} \phi_{t}+\beta \phi_{x}=0 & e^{i \vec{k} \cdot \vec{x}-i \omega t}
\end{array}
$$

Find the dispersion relation for each of them and the phase speed (or three phase speed in 3 dimensions)
2. Suppose a wave is found that has the form

$$
\phi=\mathrm{A} e^{i \theta}
$$

where

$$
\theta=-\alpha t^{2} / x
$$

a) If the wave can be thought of as slowly varying, what are its frequency, wavenumber and dispersion relation?
b) Now that you have ω and k, when will the slowly varying assumption be valid?
3. Consider the interface between two semi-infinite fluids of different densities:

Imposing wave solutions for $\left(\phi_{1}, \phi_{2}, \eta\right)$ that obey the deep water equations derive the boundary conditions that must be satisfied at $z=0$ and the dispersion relation. What type of wave have you obtained?
4. Consider a deep water wave impinging on a current $V(x)$ of the following shape:

a) What is the dispersion relation?
b) Derive the ray equations for (ω, k, ℓ) and discuss their implications.
c) A wave packet starts its motion with initial conditions $\left(\ell_{0}, k_{0}, \omega_{0}\right)$ where $V(x) \cong 0$ and impinges on the current. What is $k(x)$? Sketch the variation of the wave from $x=0$ to $x=L$.
d) If the wave ray moves as in the sketch:

What is $\sin \theta(x)$? What is the ratio $\frac{\sin \theta(x)}{\sin \theta_{0}}$?

MIT OpenCourseWare
http://ocw.mit.edu

12.802 Wave Motion in the Ocean and the Atmosphere

 Spring 2008For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

