1. Consider the following linearized equations in 1 and 3 dimensions and impose a wave solution as shown:

Linearized Equation	Plane wave
$\phi_t + c\phi_x = 0$	$e^{ikx-i\omega t}$
$\phi_{tt} - c^2 \phi_{xx} = 0$	$e^{ikx-i\omega t}$
$\phi_t + \vec{c} \cdot \nabla \phi = 0$	e ^{ik·x-iwt}
$\phi_{tt} - c^2 \nabla^2 \phi = 0$	$e^{i\vec{k}\cdot\vec{x}-i\omega t}$
$\nabla^2 \phi_t + \beta \phi_x = 0$	$e^{i\vec{k}\cdot\vec{x}-i\omega t}$

Find the dispersion relation for each of them and the phase speed (or three phase speed in 3 dimensions)

2. Suppose a wave is found that has the form

$$\phi = Ae^{i\theta}$$

where

$$\theta = -\alpha t^2 / x$$

- a) If the wave can be thought of as slowly varying, what are its frequency, wavenumber and dispersion relation?
- b) Now that you have ω and k, when will the slowly varying assumption be valid?
- 3. Consider the interface between two semi-infinite fluids of different densities:

Imposing wave solutions for (ϕ_1, ϕ_2, η) that obey the deep water equations derive the boundary conditions that must be satisfied at z = 0 and the dispersion relation. What type of wave have you obtained?

4. Consider a deep water wave impinging on a current V(x) of the following shape:

- a) What is the dispersion relation?
- b) Derive the ray equations for (ω, k, ℓ) and discuss their implications.
- c) A wave packet starts its motion with initial conditions (ℓ_0, k_0, ω_0) where $V(x) \cong 0$ and impinges on the current. What is k(x)? Sketch the variation of the wave from x = 0 to x = L.
- d) If the wave ray moves as in the sketch:

What is $\sin \theta(x)$? What is the ratio $\frac{\sin \theta(x)}{\sin \theta_0}$?

12.802 Wave Motion in the Ocean and the Atmosphere $\ensuremath{\mathsf{Spring}}\xspace$ 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.