Biogeochemical cycling in anoxic sediments

Consortia of bacteria are needed to degrade
Complex organic mater

Waste products of one bacteria serve as the substrate for another
Major reactions are fermetation, sulfate reduction, and methanogenesis

Biogeochemical zonation occurs due to differences in free energy of TEA yields

C oxidation in CLB sediments show fluxes and processes are
In balance, suggesting all major pathways are accounted for.

Natural system closely resembles that expected
from pure culture work.
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Molecular hydrogen as a control on organic matter
oxidation in anoxic sediments

Is C oxidation in anoxic sediments under thermodynamic
or kinetic control?

(CH,O)n + nH,O -->nCO, +2nH,

2nH2 +mXOX -—> mX red + ZHzo

(e.9. X, =S0,% X 4=5%)

Aern = AG(T)O + RT In ( {Xred}m/{xox}m (PH2)2n)

and...
Pro = ({X el ™{Xod™ €(AG 1-AG,O/RT)) 120



Oxidation of organic matter in marine sediments

Reaction AE(KJ/mole) Capacity
(mmoles/L sed)
O = CO> -475 0.85
NO3z~ —>» N2+ CO3 -448 0.05
Mn(IV) —  Mn () -349 2-22
Fe(lll) — Fe (1) -114 14-28
SO42~ — S2- -77 56

CO> > CHa4 -58



Rapid cycling of H, in anoxic sediments
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Effect of TEA on H, concentrations
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Hydrogen Concentration (nM)

Effect of temperature on H, concentrations
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Dependence of [H,] on [SO, ]
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Response of hydrogen concentration to variations in porewater sulfate concentration. Error bars
represent one standard deviation about the mean of triplicate sediment samples. A power function
fit to the data indicates that hydrogen has an exponential dependence of -0.26 + 0.01 on sulfate
(compare to theoretical value of -0.25).

Figure by MIT OCW.




Profiles of hydrogen and sulfate in CLB and WOR sediments
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Profiles of hydrogen and sulfate in CLB and WOR sediments
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Effect of TEA on H, concentrations
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Profiles of hydrogen and sulfate in CLB and WOR sediments
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Profiles of hydrogen and sulfate in CLB and WOR sediments
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Effect of sulfate on H, in CLB sediments
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The dependence of hydrogen concentrations on sulfate concentrations in the November core from Cape Lookout Bight . (A) blow-up of the
12-16 cm depth interval. Note that sulfate concentrations only reach threshold values below 16 cm: (B) plot of hydrogen concentration vs.
sulfate concentration over the 12-16 cm interval. A power function fit to the data indicates that hydrogen has an exponential dependence of
0.30 + 0.04 on sulfate (compared to a lab value of 0.26 + 0.01 and a theoretical value of 0.25).

Figure by MIT OCW.




Profiles of hydrogen and sulfate in CLB and WOR sediments
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Hydrogen as a control on organic matter oxidation
In anoxic sediments (fresh and marine)

Hydrogen is a by-product of fermentation and is essential
for sulfate reduction and methanogenesis.

Hydrogen concentrations respond to T, [X], pH.
Laboratory changes correspond well to field observations.

Variations in H, suggest maintenance of constant
AG values of -10 to -15 kd mol'.

H2 has a very short lifetime in sediments- makes an
Excellent E regulator. Small changes in H2 concentration
Results in large changes in AG.

Intense competition by bacteria regulate [H.,]
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Natural Sources of Atmospheric

Methane
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Almospheric Methane

C isotopic changes in atmospheric methane
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How do we explain the increase in atmospheric ?
Why is there a seasonal cycle in methane concentration?

Why is there a seasonal cycle in methane C isotopes?

(can C isotopes be used to understand and
Quantify processes that lead to atms increase?)
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There are two pathways that yield methane:

Freshwater

CH,COOH --> o 4 + CO,

Marine
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Carbon isotope fractionation with methanogenesis

Freshwater

CH,COOH --> o 4 + CO,
o = -48%o

Marine

o = -70%0
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Production of methane from acetate and CO,
in CLB sediments. 14C tracer studies.

14C tracer rates
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Seasonal Changes in 13C for Methane and CO,

Cape Lookout Bight sediment gas bubble composition and 813C data. Values listed are means + SD for the number
of samples bottle listed. Superscript indicate the number of samples for which compositional data wee obtained when
different from the number of sample bottle listed.

Date hﬁjfﬁ;’: Methane 513C-CH, iﬂ;i‘tﬁt’zg: Carbon dioxide  513¢-CO,
tiiles (o) content (%) (per mile) e content (%) (per mil)
6-June-1983 5 97 +2 64.5+7 5 2.540.1 6.8+ 1.1
19-June-1983 6 95 + 4 62.2+0.4 6 3.4+0.23 8.6+ 1.2
3-August-1983 5 96 + 4 61.7+0.9 5 24403 8.8+1.0
19-August-1983 5 94 + 2 -57.5+.0.3 4 24402 9.4+ 03
15-September-1983 5 97+2 -60.3 £ 0.4 5 2.5%£0.1 -83£0.5
16-October-1983 6 95 +3 -60.0 £ 0.5 5 2.4+0.5% 7.2+0.6
20-November-1983 4 93 +2 -62.2+0.4 4 2.44+0.6 -8.0 £ 0.2
2-February-1984 4 98 + 3 -63.4 + 0.6 4 1.6 £ 0.5 6.0+1.2
7-April-1984 4 94 + 33 -63.8£0.2 4 1.0+ 0.23 -5.14£0.7
6-May-1984 4 90 + 6 -63.8 + 0.4 3 15402 3.0+£0.8
31-May-1984 5 94 + 5 -68.5+0.7 3 1.840.6 7.0 +£2.0
14-June-1984 5 94 + 3 -64.1+ 0.6 4 2941.0 6.2+ 2.4
2-July-1984 4 97 + 42 59.4+1.2 2 2.140.1 -10.0 £ 0.7
18-July-1984 4 98 + 22 -60.6 + 1.6 2 22402 -10.6 +3.2
11-August-1984 5 98 + 34 -57.3+£0.6 5 2.3+0.2 7.6+1.2
30-August-1984 4 94 + 1 579+ 1.0 3 38+1.1 89 +1.1
22-September-1984 5 99 + 02 -58.0 £ 0.3 5 24413 8.1+1.0

Figure by MIT OCW.




Changes in C-13 in CLB methane

Image removed due to copyright restrictions.[]



Changes in C-13 in CLB methane

Image removed due to copyright restrictions(]



Monthly flux and isotope data for methane flux from CLB

Monthly methane | Annual 513C-CH,t

Month bubble flux* Fluxa (per mil)

(mmol m-2) (%)
January 0 0
February 0 0 -63.4 £ 0.6
March 0 0
April 0 0
May 38 0.8 -63.4 £0.2
June 350 7.2 -66.4 £ 2.5
July 1270 26.2 -64.3 £ 0.7
August 1643 33.9 -61.0 £ 1.6
September 1095 22.6 -58.7+£2.0
October 409 8.4 -60.0 £ 0.5
November 47 1.0 -62.2+0.4
December 0 0
Full year 4582 + 1277 100.0 -60.0 £ 1.0

WAS

Figure by MIT OCW.




Anaerobic methane oxidation...where has all
the methane gone?

Oceans have a huge reservoir of methane in sediments, but
Contribute only 2% of the global atmospheric flux of methane.

Several lines of evidence suggest methane is being efficiently
Oxidized before it reaches the sediment water interface:

curvature in methane profiles
radiotracer experiments

isotopic fractionation between methane and CO,

measured rates of methane oxidation in sulfate
reduction zone.



CH, + SO, % --->>HCO; -+ HS- +H,O

Energetically favorable, but ratio of SRR/MOR
is very high ( >99.99).

Anaerobic methane oxidation probably occurs
as a consortia between SRB and MOB



Coupled methane oxidation and sulfate reduction in
CLB sediments
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Methane oxidation
and CO, reduction to
methane in CLB sediments
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