Simple Decay ($^{238}U \rightarrow ^{206}Pb$)

Decay Series (230 Th $\rightarrow ^{226}$ Ra)

Extinct Radionuclide (²⁶Al \rightarrow ²⁶Mg)

Important Extinct Radionuclides

Parent	Daughter	Decay	Half-life (My)	Decay const.
²⁶ Al	²⁶ Mg		0.716	9.8 10 ⁻⁷
⁴¹ Ca	⁴¹ K	e ⁻ -capture	0.103	6.7 10 ⁻⁶
⁵³ Mn	⁵³ Cr	e ⁻ -capture	3.7	1.9 10 ⁻⁷
⁶⁰ Fe	⁶⁰ Ni	two β⁻	1.5	4.7 10 ⁻⁷
¹⁰⁷ Pd	¹⁰⁷ Ag	β-	6.5	1.1 10 ⁻⁷
129	¹²⁹ Xe	β-	15.7	4.3 10 ⁻⁸
¹⁴⁶ Sm	¹⁴² Nd	alpha	103	6.7 10 ⁻⁹
¹⁸² Hf	¹⁸² W	two β⁻	9.0	7.7 10 ⁻⁸

How to calculate isotope abundances from isotope ratios

10 n 11 n 12 n 13 n 14 n 15 n 16 n 17 n 18 n 19 n

e⁻ capture: $p^+ + e^- \longrightarrow n + v_e + E$

 $\boldsymbol{\beta}^+$ - decay: $p^+ \longrightarrow n + e^+ + \boldsymbol{v}_e + \boldsymbol{E}$ (check conservation laws)

Important Extinct Radionuclides

Parent	Daughter	Decay	Half-life (My)	Decay const.
²⁶ Al	²⁶ Mg	e^{-} and β +	0.716	9.8 10 ⁻⁷
⁴¹ Ca	⁴¹ K	e ⁻ -capture	0.103	6.7 10 ⁻⁶
⁵³ Mn	⁵³ Cr	e ⁻ -capture	3.7	1.9 10 ⁻⁷
⁶⁰ Fe	⁶⁰ Ni	2 beta minus	1.5	4.7 10 ⁻⁷
¹⁰⁷ Pd	¹⁰⁷ Ag	beta minus	6.5	1.1 10-7
¹²⁹	¹²⁹ Xe	beta minus	15.7	4.3 10 ⁻⁸
¹⁴⁶ Sm	¹⁴² Nd	alpha	103	6.7 10 ⁻⁹
¹⁸² Hf	¹⁸² W	2 beta minus	9.0	7.7 10 ⁻⁸

Extinct Radionuclides

Remember "Simple Decay":

1)
$$-dN_1/dt = \lambda_1 N_1$$

What happens in a simple decay scheme if λ_1 is so large, i.e. the half-life is so short, that none of the original radioisotope remains today? For example, consider the decay of ²⁶Al to ²⁶Mg with a half-life of 705,000 years:

2)
$${}^{26}Mg_t = {}^{26}Mg_0 + {}^{26}Al (e^{\lambda t} - 1)$$

The ²⁶Al that was present during the early history of the solar system has decayed.

However, that ²⁶Al has decayed to ²⁶Mg. The amount of "extra" ²⁶Mg is a function of the initial ratio of Al to Mg in a sample and the timing of the formation of the sample. It will have more "extra" ²⁶Mg if it formed early during the period when ²⁶Al was still abundant. We can therefore state that

3)
$${}^{26}Mg/{}^{24}Mg_t = {}^{26}Mg/{}^{24}Mg_0 + {}^{26}Al/{}^{24}Mg$$

We substitute the second, unknown, term with:

4)
$${}^{26}\text{Al}/{}^{24}\text{Mg}_{t} = ({}^{26}\text{Al}/{}^{27}\text{Al})_{t} ({}^{27}\text{Al}/{}^{24}\text{Mg})_{t}$$

Rearrange:

5)
$${}^{26}Mg/{}^{24}Mg_t = {}^{26}Mg/{}^{24}Mg_0 + ({}^{26}Al/{}^{27}Al)_t ({}^{27}Al/{}^{24}Mg)_t$$

This is the equation of a line (y = b + mx) in ${}^{26}Mg/{}^{24}Mg_t$ over (${}^{27}Al/{}^{24}Mg$) space where the slope (m) is

6)
$$m = {}^{26}Al/{}^{27}Al_t$$

Extinct Radionuclide Systematics

Figure of ²⁶Mg/²⁴Mg vs. ²⁷Al/²⁴Mg with model isochron lines and "forbidden region" removed due to copyright restrictions.

See figure 10.4 on page 122 of Tolstikhin, Igor and Jan Kramers. "The Evolution of Matter: From the Big Bang to the Present Day." Cambridge University Press, 2008.

Extinct Radionuclide Systematics

Figure of ²⁶Mg/²⁴Mg, ²⁷Al/²⁴Mg, and δ^{26} Mg values in the Allende and meteorite and Melilite mantle minerals removed due to copyright restrictions.

See figure 10.6 on page 125 of Tolstikhin, Igor and Jan Kramers. "The Evolution of Matter: From the Big Bang to the Present Day." Cambridge University Press, 2008.

Extinct Radionuclide Systematics

Figure of ${}^{26}Mg/{}^{24}Mg$, ${}^{27}Al/{}^{24}Mg$, and $\delta^{26}Mg$ values in meteorites removed due to copyright restrictions.

See figure 10.7 on page 126 of Tolstikhin, Igor and Jan Kramers. "The Evolution of Matter: From the Big Bang to the Present Day." Cambridge University Press, 2008. 12.744 Marine Isotope Chemistry Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.