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PALEOCEANOGRAPHY     12.740     SPRING 2006      lecture 8 

 
I II. Atmospheric gas record in ice cores 

A. Methodological issues; firn/ice transition; age of air; gravitational fractionation; bubble 
compression and relaxation; gas extraction; reactions with ice and/or water or solids; 
impurities. 
 
1. Firn/ice transition: depth correlated with temperature due to effect of T on pressure sintering:  

 

 

 
Figure by MIT OpenCourseWare.  Adapted from source: Craig and Wiens (1996).  

2. "Gravitational equilibrium for isotope and perfect gas ratios is described by the Gibbs 
equation:" (Craig and Wiens, 1996)  
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e.g. in a 100m diffusive firn layer, 84Kr should be enriched over 36Ar by 1.28%, 15N is 

enriched over 14N by ~0.4‰   
The driving processes are a balance between gravitational forcing, forcing heavier 

isotopes to underlay lighter isotopes, and random molecular diffusion, working 
against the gradient established by gravity.  

The result can be derived from the barometric equation  

P = Po exp[ Mgz
RT

] 
 

describing the pressure of a gas above the surface of the earth that would be observed 
if molecular diffusion was the dominant mode of vertical transport [i.e., no turbulent 
diffusion, as seen in the atmosphere](Dalton, 1826; Gibbs, 1928).  
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3. Thermal diffusion: during a sudden warming, where the surface is warmer than the bottom 

of the firn layer, the cold bottom end is enriched in heavier isotopes: δ15N = αN∆T and δ40Ar 
= αAr∆T where αN and αAr are the thermal diffusion coefficients for N2 and Ar respectively.  

Figure removed due to copyright considerations. 
Please see: 
Figure 2 in Severinghaus J. P., T. Sowers, E.J. Brook, R. B. Alley, and M. L. Bender. 
"Timing of abrupt climate change at the end of the Younger Dryas interval from thermally 
fractionated gases in polar ice." Nature 391 (1998): 141-146.  
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4. Methods of gas extraction: melting/freezing cycles for CO2, N2O; needle-crushing for CO2.  

B. CO2  
1. Vostok ice core CO2: 

 
 
 
 
 
 

Figure removed due to copyright considerations. 
Please see: 
Jouzel J., C. Lorius, J. R. Petit, C. Genthon, N. I. Barkov, V. M. Kotlyakov, and V. M. Petrov. 
“Vostok ice core: a continuous isotope temperature record over the last climatic cycle 
(160,000 years).” Nature 329 (1987): 403-408. 
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Image removed due to copyright considerations. 
Please see: 
Figure 3 in Vostok time series and insolation. Nature 399 (June 3, 1999).
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2. Byrd ice core CO2 

 

 

 
4. Taylor Dome Holocene CO2 record 

Image removed due to copyright considerations.
Source: Staffelbach et al. (1991).



 7

 

Image removed due to copyright considerations.
Source: Indermühle et al. (1999).



 8
  

C. δ18O2 
 

1. Dole Effect: δ18O2 of atmosphere is +23.5‰ relative to SMOW. 
 

a. Photosynthesis: H2O + CO2 = O2 + CH2O 
 

         δ18O2(photo) = δ18O(water) + A (kinetic isotope effect during photosynthesis) 
 

      where δ18O(water) = δ18O(ocean) + W 
(where W is the weighted mean difference between the isotopic composition of the ocean and the 
water immediately used for respiration)  

b. Respiration: O2 + CH2O = H2O + CO2  
 

         δ18O2(resp) = δ18O2 + B (respiratory kinetic isotope fractionation) 
 
c. At steady-state, 
 
          δ18O2 - δ18O (ocean) = W + A - B 
 

2. Gross Productivity and atmospheric oxygen residence time 
 

 
source: Bender et al. (1985) 
3. Terrestrial O2 and δ18O2 mass balance 
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source: Bender et al. (1994)  
4. Marine O2 and δ18O2 mass balance 

 

 
source: Bender et al. (1994)  
5. Byrd ice core 
 
6. Vostok ice core 
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7. GISP2 ice core 

Image removed due to copyright considerations.
Source: Sowers et al. (1993).
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D. CH4  

 

 
 
 

 
 
 
 
 
 

Image removed due to copyright considerations.
Source: Chappelez et al. (1993).
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Figure removed due to copyright considerations. 
Please see: 
Brook, et al. Science 273 (August 23, 1996): 1088. 
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Figure removed due to copyright considerations. 
Please see: 
Figure 1 in Blunier, T., and E. Brook. “Timing of millennial-scale climate change in Antarctica and 
Greenland during the last glacial period.” Science 291 (2001):109-112. 
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E. O2/N2: relation to local insolation, use for time scale development. 
 
 
 
 
 
 
 

Image removed due to copyright considerations. 
Please see: 
Bender. EPSL 204 (2002): 275.

 
 
 
 
 
 
 
 
 
 
 
 

F. N2O 
 
IV. Other tracers in ice cores: dust (note Sr+Nd isotope work), 10Be, volcanic ash, chemicals, crystal 

size in ice cores; atmospheric pressure of bubbles  
A. Sea-salt, volcanic acid, and dust in Greenland ice cores 



 16

 

 

Image removed due to copyright considerations.
Source: Hammer et al. (1985).
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Image removed due to copyright considerations.
Source: Hammer et al. (1985).
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B. Seasalt and dust in the Vostok ice core 

Image removed due to copyright considerations.
 Source: Hammer et al. (1985).
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C. Calcium in the GISP2 ice core: relation to "1500 year" climate cycle and Dansgaard/Oeschger 

events 
 

B. 10Be 

Image removed due to copyright considerations.
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E. Methanesulfonic acid (dimethyl sulfide product) 
 

1. Marine organisms produce DMSP (dimethylsulfoniopropionate:  

Image removed due to copyright considerations.
Source: Mayewski et al. (1997).

Source: Mayewski et al. (1997).
Image removed due to copyright considerations.
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CH3 
      \ 
        S+-CH2-CH2-COO- 
      / 
CH3  

 
this is converted to DMS [(CH3)2S] when they are munched up. 
 
2. DMS is volatile and goes into the atmosphere 
 
3. DMS is oxidized in the atmosphere to two byproducts with a "branch ratio": sulfuric acid 

(H2SO4) and methanesulfonic acid (MSA: CH3SO3H).  Cycle is complex with many 
intermediates; branch ratio appears to depend mainly on temperature (low MSA:nssSO4= 
at warmer temperatures) 

 
4. The products are transported to the ice and recorded there as non-sea-salt sulfate (nss 

SO4=) and MSA. 
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source: Legrand et al. (1991)  
F. Chemicals: other major ions and trace elements   

  
d. GRIP borehole Monte-Carlo simulations Dahl-Jensen et al. (1998)  
e. How to resolve this discrepancy?  

i. Seasonality of precipitation (less snow in LGM winter)?  
ii. Shifted O18-T relationship due to cool tropics?  

H. Other indicators  
1. Nd-Sr isotopes: argues that Greenland LGM dust came from Asia 

 
   

V. The last 1000 years: Little Ice Age and Medieval Warm Period 
 
 
 
 
 
 

Image removed due to copyright considerations.
Source: Grousset, Biscaye et al.
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Image removed due to copyright considerations. 
Please see: 
Figure 3 in Dansgaard W., S. J. Johnsen, H. B. Clausen, and C.C. Langway J. "Climatic record 
revealed by the Camp Century Ice Core." In Late Cenozoic Ice Ages.  Edited by K. K. 
Turekian. Yale University Press, 1971,  pp. 37-56.

   
 
 
 
 

 
 
V I. Rapid climate change in ice cores: Younger Dryas, interstadials, etc. 

A. Younger Dryas and Bolling-Allerod  
B. Interstadials  
C. Synchroneity of rapid climate events 

 
V III. The ice core time scale: relative and absolute stratigraphy, accuracy and precision 

A. The players  
1. layer-counting (hoar frost layers, dust layers, O18 cycles, chemical signals  
2. δ18O2  
3. CH4 

 
4. 10Be  
5. correlations to other climate records  

B. The state of the art, 1998  
1. Absolute chronology  

a. Ice core layer counting at GISP2 appears to be the winner for precision and accuracy for 
the past ~40,000 years. It is consistent with δ18O2 but offers more precision. Beyond 
that period, it becomes increasingly less objective and inaccurate.  
i. a possible competitor in this interval is the calibrated radiocarbon record linked to key 

climate events. The accuracy ultimately should be the same or better, but problems 
in sorting out atmospheric D14C variability and phase leads and lags make it more 
problematical.  

b. δ18O2 links us to the marine chronology prior to that time (the marine chronology being 
constrained by coral 230Th/U dates correlated to foraminiferal d18O and "orbital tuning"  

2. Relative chronologies  
a. δ18O2 links ice cores between the two hemisphere with a relative precision of a few 

hundred to several thousands of years.  
b. detailed CH4 records can correlate ice cores between the hemisperes to several 

decades to several hundredds of years, given sufficient temporal resolution of the core 
and sampling.  
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c. 10Be provides one or two absolute spikes that can test the accuracy the chronology 

provided by the above methods, and perhaps allow for a quicker homing in. If, as now 
seems very likely, the 10Be spikes are linked to fluctuations in the earth's magnetic field, 
it may also allow a link to chronologies in marine sediments and continental materials.  

d. correlation to other highly resolved climate records (e.g. ice δ18O compared to gray scale 
of Cariaco Trench varved sediments, bioturbation index of Santa Barbara Nasin 
sediments) is useful, but carries inherent uncertainty regarding the phase relationships 
(some events may lead, others may lag, even though linked to the same system. For 
example: maximum summer warmth lags maximum incoming radiation by several 
months...)  

e. Volcanic ash: Ram and Gayley (1991) observed a volcanic ash shard layer 1950 m 
depth in the Dye 3 ice core which they suggested was the same as a marine ash layer 
observed by Ruddiman and Glover (1972) - hence linking the marine and ice core 
chronologies at ~57 kyrBP.  

f. Acidity links Indonesian marine record to central Greenland ice core? (can we be sure 
that this volcanic eruption was in fact Toba and not some other volcano?)  
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Image removed due to copyright considerations. 
Please see: 
Figure 1 in Zielinksi G. A., P. A. Mayewski, L. D. Meeker, W. Whitlow, and M. S. Twickler. 
"Potential atmospheric impact of the Toba mega-eruption ~71,000 years ago." Geophys Res 
Lett 23. (1996): 837-840.  
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Also note: a volume of joint GISP2/GRIP results were published in JGR vol. 102 (1997, #C12 pp. 

26315-26886). Many worthwhile results and summaries are contained within. 
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