12.740 Paleoceanography

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

- III. Atmospheric gas record in ice cores
 - A. Methodological issues; firn/ice transition; age of air; gravitational fractionation; bubble compression and relaxation; gas extraction; reactions with ice and/or water or solids; impurities.
 - 1. Firn/ice transition: depth correlated with temperature due to effect of T on pressure sintering:

Plot of observed values of firn thickness at Arctic (Blue Circles) and Antarctic (Red Circles) polar-ice sites versus temperatures at a depth of 10m. Data are from Paterson [(3), p. 15]. The firn temperatures are approximate mean annual surface temperatures on the ice sheets during snow accumulation. The linear fit is given by Z = -1.30T + 31.5.

Figure by MIT OpenCourseWare. Adapted from source: Craig and Wiens (1996)

2. "Gravitational equilibrium for isotope and perfect gas ratios is described by the Gibbs equation:" (Craig and Wiens, 1996)

$$\frac{R}{R_o} = \exp\left[\frac{gz(\Delta M)}{RT}\right]$$

- e.g. in a 100m diffusive firn layer, ⁸⁴Kr should be enriched over ³⁶Ar by 1.28%, ¹⁵N is enriched over ¹⁴N by ~0.4‰
- The driving processes are a balance between gravitational forcing, forcing heavier isotopes to underlay lighter isotopes, and random molecular diffusion, working against the gradient established by gravity.

The result can be derived from the barometric equation

$$P = P_o \exp[\frac{Mgz}{RT}]$$

describing the pressure of a gas above the surface of the earth that would be observed if molecular diffusion was the dominant mode of vertical transport [i.e., no turbulent diffusion, as seen in the atmosphere](Dalton, 1826; Gibbs, 1928). 3. Thermal diffusion: during a sudden warming, where the surface is warmer than the bottom of the firn layer, the cold bottom end is enriched in heavier isotopes: $\delta^{15}N = \alpha_N \Delta T$ and $\delta^{40}Ar = \alpha_{Ar}\Delta T$ where α_N and α_{Ar} are the thermal diffusion coefficients for N₂ and Ar respectively.

Figure removed due to copyright considerations. Please see:

Figure 2 in Severinghaus J. P., T. Sowers, E.J. Brook, R. B. Alley, and M. L. Bender. "Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice." *Nature* 391 (1998): 141-146. 4. Methods of gas extraction: melting/freezing cycles for CO₂, N₂O; needle-crushing for CO₂.

B. CO₂

1. Vostok ice core CO_{2:}

Figure removed due to copyright considerations. Please see:

Jouzel J., C. Lorius, J. R. Petit, C. Genthon, N. I. Barkov, V. M. Kotlyakov, and V. M. Petrov. "Vostok ice core: a continuous isotope temperature record over the last climatic cycle (160,000 years)." *Nature* 329 (1987): 403-408. Image removed due to copyright considerations. Please see: Figure 3 in Vostok time series and insolation. *Nature* 399 (June 3, 1999). 2. Byrd ice core CO2

Image removed due to copyright considerations. Source: Staffelbach et al. (1991).

4. Taylor Dome Holocene CO2 record

Image removed due to copyright considerations. Source: Indermühle et al. (1999).

- C. δ¹⁸O₂
 - 1. Dole Effect: $\delta^{18}O_2$ of atmosphere is +23.5‰ relative to SMOW.

a. Photosynthesis: $H_2O + CO_2 = O_2 + CH_2O$

 $\delta^{18}O_2(\text{photo}) = \delta^{18}O(\text{water}) + A$ (kinetic isotope effect during photosynthesis)

where $\delta^{18}O(water) = \delta^{18}O(ocean) + W$

(where W is the weighted mean difference between the isotopic composition of the ocean and the water immediately used for respiration)

b. Respiration: $O_2 + CH_2O = H_2O + CO_2$

 $\delta^{18}O_2(\text{resp}) = \delta^{18}O_2 + B$ (respiratory kinetic isotope fractionation)

c. At steady-state,

 $\delta^{18}O_2 - \delta^{18}O$ (ocean) = W + A - B

2. Gross Productivity and atmospheric oxygen residence time

Parameters for estimating the turnover time of atmospheric O_2

Global atmospheric O₂ reservoir $(GO_2R) = 3.7 \times 10^{19}$ mol Terrestrial net primary productivity $(TNPP) = 5 \times 10^{15}$ mol yr⁻¹ (refs 21, 22) Terrestrial gross primary productivity $(TGPP) = 2 \times TNPP$ (ref. 23) = 10×10^{15} mol yr⁻¹ Marine primary productivity $(MPP) = 2 \times 10^{15}$ (ref. 24)-10 × 10¹⁵ mol yr⁻¹ (refs 24, 25) Global primary productivity (GPP) = $(TGPP + MPP) = 12 \times 10^{15} - 20 \times 10^{15}$ mol yr⁻¹

Atmospheric O₂ turnover time = $(GO_2R/GPP) = 3.1-1.9$ kyr

source: Bender et al. (1985) 3. Terrestrial O_2 and $\delta^{18}O_2$ mass balance

Production term		Production	Reference
Gross production excluding photorespired O_2 (GPP) Gross production including photorespiration (14.1/0.69))	14.1	Farquhar et al. [1993] Farquhar et al. [1980]
Process	Fraction of respiratory O_2 consumption	Isotope effect	Reference
δ^{18} O of terrestrial photosynthetic O ₂ w. r. t. SMOW		4.4 %0	Farquhar et al. [1993]
Discrimination against O ¹⁸ during respiration			
Dark respiration Mehler reaction Photorespiration Flux weighted terrestrial respiratory isotope effect, excluding dark respiration	59% 10% 31%	18.0 15.1 21.2% 18.7%	Guy et al. [1992, 1993] Guy et al. [1992] Guy et al. [1992]
Equilibrium enrichment in δ^{18} O of leaf water w. r. t. air		+0.7%	Benson and Krause [1984]
Terrestrial respiratory isotope effect (= 18.7%-0.7%)		18.0%	
Terrestrial Dole effect		22.4 ‰	

Table 1a. Terrestrial Mass Balance of O_2 and $\delta^{18}O$ of O_2

source: Bender et al. (1994)

4. Marine O_2 and $\delta^{18}O_2$ mass balance

BENDER ET AL.: DOLE EFFECT IN THE VOSTOK ICE CORE

Table 1b. Marine Mass Balance of O_2 and $\delta^{18}O$ of O_2

Production term	Production (x10 ¹⁵ moles/yr)	Reference	
Marine gross production (=4 x seasonal net productio Marine gross production - recycling within the ocean	n) 12 10.6	Keeling and Shertz [1992]	
Process	Isotope effect	Reference	
δ^{18} O of O ₂ produced by marine photosynthesis			
δ^{18} O of marine photosynthetic O ₂	0 ‰		
Discrimination against ¹⁸ O during marine respiration			
Average marine ε_R (applies to euphotic respiration Effective ε_R for respiration below the euphotic zon Equilibr. enrichment in $\delta^{18}O$ of O_2 in water w.r.t. a Effective ε_R for marine respiration*) 20 % c 12 % ir 0.7 % 18.9 %	Kiddon et al. [1993] Bender [1990] Benson and Krause [1984]	
Marine Dole effect	18.9 %		

source: Bender et al. (1994)

5. Byrd ice core

6. Vostok ice core

Image removed due to copyright considerations. Source: Sowers et al. (1993).

7. GISP2 ice core

D. CH₄

Image removed due to copyright considerations. Source: Chappelez et al. (1993). Figure removed due to copyright considerations. Please see: Brook, et al. *Science* 273 (August 23, 1996): 1088. Figure removed due to copyright considerations. Please see:

Figure 1 in Blunier, T., and E. Brook. "Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period." *Science* 291 (2001):109-112.

E. O_2/N_2 : relation to local insolation, use for time scale development.

Image removed due to copyright considerations. Please see: Bender. *EPSL* 204 (2002): 275.

F. N₂O

- IV. Other tracers in ice cores: dust (note Sr+Nd isotope work), ¹⁰Be, volcanic ash, chemicals, crystal size in ice cores; atmospheric pressure of bubbles
 - A. Sea-salt, volcanic acid, and dust in Greenland ice cores

Image removed due to copyright considerations. Source: Hammer et al. (1985). Image removed due to copyright considerations. Source: Hammer et al. (1985). Image removed due to copyright considerations. Source: Hammer et al. (1985).

B. Seasalt and dust in the Vostok ice core

Figure by MIT OpenCourseWare. Adapted from de Angelis et al. (1987).

Figure by MIT OpenCourseWare. Adapted from de Angelis et al. (1987).

Image removed due to copyright considerations.

C. Calcium in the GISP2 ice core: relation to "1500 year" climate cycle and Dansgaard/Oeschger events

Image removed due to copyright considerations. Source: Mayewski et al. (1997).

Image removed due to copyright considerations. Source: Mayewski et al. (1997).

E. Methanesulfonic acid (dimethyl sulfide product)

1. Marine organisms produce DMSP (dimethylsulfoniopropionate:

CH₃ \ S⁺-CH₂-CH₂-COO⁻ / CH₃

this is converted to DMS $[(CH_3)_2S]$ when they are munched up.

- 2. DMS is volatile and goes into the atmosphere
- 3. DMS is oxidized in the atmosphere to two byproducts with a "branch ratio": sulfuric acid (H₂SO₄) and methanesulfonic acid (MSA: CH₃SO₃H). Cycle is complex with many intermediates; branch ratio appears to depend mainly on temperature (low MSA:nssSO₄⁼ at warmer temperatures)
- 4. The products are transported to the ice and recorded there as non-sea-salt sulfate (nss $SO_4^=$) and MSA.

Depth profiles of a, δD , b, MSA, c, non-seasalt sulphate and d, the ratio of MSA to non-seasalt sulphate in the Vostok ice core. Upper and lower stage boundaries are marked by vertical lines. (δD is deuterium isotope profile)

24

source: Legrand et al. (1991)

F. Chemicals: other major ions and trace elements

- d. GRIP borehole Monte-Carlo simulations Dahl-Jensen et al. (1998)
- e. How to resolve this discrepancy?
 - i. Seasonality of precipitation (less snow in LGM winter)?
 - ii. Shifted O18-T relationship due to cool tropics?
- H. Other indicators
 - 1. Nd-Sr isotopes: argues that Greenland LGM dust came from Asia

Image removed due to copyright considerations. Source: Grousset, Biscaye et al.

V. The last 1000 years: Little Ice Age and Medieval Warm Period

Image removed due to copyright considerations. Please see: Figure 3 in Dansgaard W., S. J. Johnsen, H. B. Clausen, and C.C. Langway J. "Climatic record revealed by the Camp Century Ice Core." In *Late Cenozoic Ice Ages*. Edited by K. K. Turekian. Yale University Press, 1971, pp. 37-56.

- VI. Rapid climate change in ice cores: Younger Dryas, interstadials, etc.
 - A. Younger Dryas and Bolling-Allerod
 - **B.** Interstadials
 - C. Synchroneity of rapid climate events
- VIII. The ice core time scale: relative and absolute stratigraphy, accuracy and precision
 - A. The players
 - 1. layer-counting (hoar frost layers, dust layers, O18 cycles, chemical signals
 - 2. δ¹⁸O₂
 - 3. CH₄
 - 4. ¹⁰Be
 - 5. correlations to other climate records
 - B. The state of the art, 1998
 - 1. Absolute chronology
 - a. Ice core layer counting at GISP2 appears to be the winner for precision and accuracy for the past ~40,000 years. It is consistent with $\delta^{18}O_2$ but offers more precision. Beyond that period, it becomes increasingly less objective and inaccurate.
 - i. a possible competitor in this interval is the calibrated radiocarbon record linked to key climate events. The accuracy ultimately should be the same or better, but problems in sorting out atmospheric D14C variability and phase leads and lags make it more problematical.
 - b. δ¹⁸O₂ links us to the marine chronology prior to that time (the marine chronology being constrained by coral 230Th/U dates correlated to foraminiferal d18O and "orbital tuning"
 - 2. Relative chronologies
 - a. $\delta^{18}O_2$ links ice cores between the two hemisphere with a relative precision of a few hundred to several thousands of years.
 - b. detailed CH₄ records can correlate ice cores between the hemisperes to several decades to several hundredds of years, given sufficient temporal resolution of the core and sampling.

- c. ¹⁰Be provides one or two absolute spikes that can test the accuracy the chronology provided by the above methods, and perhaps allow for a quicker homing in. If, as now seems very likely, the ¹⁰Be spikes are linked to fluctuations in the earth's magnetic field, it may also allow a link to chronologies in marine sediments and continental materials.
- d. correlation to other highly resolved climate records (e.g. ice δ^{18} O compared to gray scale of Cariaco Trench varved sediments, bioturbation index of Santa Barbara Nasin sediments) is useful, but carries inherent uncertainty regarding the phase relationships (some events may lead, others may lag, even though linked to the same system. For example: maximum summer warmth lags maximum incoming radiation by several months...)
- e. Volcanic ash: Ram and Gayley (1991) observed a volcanic ash shard layer 1950 m depth in the Dye 3 ice core which they suggested was the same as a marine ash layer observed by Ruddiman and Glover (1972) hence linking the marine and ice core chronologies at ~57 kyrBP.
- f. Acidity links Indonesian marine record to central Greenland ice core? (can we be sure that this volcanic eruption was in fact Toba and not some other volcano?)

Image removed due to copyright considerations. Please see:

Figure 1 in Zielinksi G. A., P. A. Mayewski, L. D. Meeker, W. Whitlow, and M. S. Twickler. "Potential atmospheric impact of the Toba mega-eruption ~71,000 years ago." *Geophys Res Lett* 23. (1996): 837-840. Reading:

- * Barnola, J.M., Raynaud, D., Korotkevitch, Y.S. and Lorius, C., 1987. Vostok ice core: a 160,000year record of atmospheric CO2. *Nature*, 329:408-414.
- * Bender, M., T. Sowers, M.-L. Dickson, J. Orchardo, P. Grootes, P. Mayewski, and D.A. Meese, Climate correlations between Greenland and Antarctica during the past 100,000 years, *Nature*, *372*, 663-666, 1994a.
- Bender, M., T. Sowers, and L. Labeyrie, The Dole effect and its variations during the last 130,000 years as measured in the Vostok ice core, *Glob. Biogeochem. Cyc.*, *8*, 363-376, 1994b.
- Blunier, T. and E. Brook (2001) Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period, Science 291:109-112
- Boyle, E.A. (1997) Cool tropical temperatures shift the global d¹⁸O-T relationship: an explanation for the Ice Core δ^{18} O / borehole thermometry conflict?, Geophys. Res. Lett. 24:273-276.
- Craig H., Horibe Y. ,and Sowers T. (1988) Gravitational separation of gases and isotopes in polar ice caps. *Science.* **242**, 1675-1678.
- Cuffey, K.M., G.D. Clow, R.B. Alley, M. Stuiver, E.D. Waddington, and R.W. Saltus, Large Arctic Temperature Change at the Wisconsin-Holocene Glacial Transition, *Science*, *270*, 455-458, 1995.
- Dahl-Jensen, D., K. Mosegaard, et al. (1998). "Past temperatures directly from the Greenland ice sheet." Science 282: 268-271.
- Dansgaard W., Johnsen S. J., Clausen H. B. ,and C.C. Langway J. (1971) Climatic record revealed by the Camp Century Ice Core. In *Late Cenozoic Ice Ages* (ed. K. K. Turekian), Vol. pp. 37-56. Yale University Press.
- Grootes P. M., Stuiver M., White J. W. C., Johnsen S., and Jouzel J. (1993) Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. *Nature* **366**, 552-554.
- Hammer, C.U., Clausen, H.B. and Tauber, H., 1986. Ice-core dating of the Pleistocene/Holocene boundary applied to a calibration of the 14C time scale, Radiocarbon. 28, 284-291:.
- Hammer C. U., Clausen H. B., Dansgaard W., Neftel A., Kristinsdottir P., and Johnson E. (1985)
 Continuous impurity analysis along the Dye 3 deep core. In *Greenland Ice Core: Geophysics, Geochemistry, and the Environment* (ed. C. C. LangwayJr., H. Oeschger and W. Dansgaard),
 Vol. 33, pp. 90-94. Am. Geophys. Union.
- Herron M. M. ,and LangwayJr. C. C. (1985) Chloride, nitrate, and sulfate in the Dye 3 and Camp Century, Greenland ice cores. In *Greenland Ice Core: Geophysics, Geochemistry, and the Environment* (ed. C. C. LangwayJr., H. Oeschger and W. Dansgaard), Vol. 33, pp. 77-84. Am. Geophys. Union.*Jouzel, J., Raisbeck, G., Benoist, J.P., Yiou, F., Lorius, C., Raynaud, D. and J.R. Petit, N.I. Barkov, Y.S. Kortkevitch, and V.M. Kotlyakov, 1989. A comparison of deep Antarctic ice cores and their implications for climate between 65,000 and 15,000 years ago. Quat. Res., 31:135-150.
- Indermühle A., Stocker T. F., Joos F., Fischer H., Smith H. J., Wahlen M., Deck B., Mastroianni D., Tschumi J., Blunier T., Meyer R., and Stauffer B. (1999) Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398, 121-126.

- * Jouzel J., Lorius C., Petit J. R., Genthon C., Barkov N. I., Kotlyakov V. M. ,and Petrov V. M. (1987) Vostok ice core: a continuous isotope temperature record over the last climatic cycle (160,000 years). *Nature.* **329**, 403-408.
- * Jouzel J., Barkov N. I., Barnola J. M., Bender M., Chappellaz J., Genthon C., Kotlyakov V. M., Lipenkov V., Lorius C., Petit J. R., Raynaud D., Raisbeck G., Ritz C., Sowers T., Stievenard M., Yiou F. ,and Yiou P. (1993) Extending the Vostok ice-core record of paleoclimate to the penultimate glacial period. *Nature.* **364**, 407-412.
- Landais, A., J. Jouzel, V. Masson-Delmotte, N. Caillona (2005) Large temperature variations over rapid climatic events in Greenland: a method based on air isotopic measurements, C.R. Geoscience 337:947–956.
- Legrand M., Feniet-Saigne C., Saltzman E. S., Germain C., Barkov N. I. ,and Petrov V. N. (1991) Icecore record of oceanic emissions of dimethylsulphide during the last climate cycle. *Nature.* **350**, 144-146.
- Mayewski, P.A., L.D. Meeker, M.S. Twickler, S.I. Whitlow, Q. Yang, W.B. Lyons, and M. Prentice (1997) Major features and forcing of high-latitude northern hemisphere atmospheric circulation using a 110,000-year-long glaciochemical series, J. Geophys. Res. 102:26345-26366.
- Mulvaney R., Wolff E. W. ,and Oates K. (1988) Sulfuric acid at grain boundaries in Antarctic ice. *Nature.* **331**, 247-249.
- * Neftel, A., Oeschger, H., Staffelbach, T. and Stauffer, B., 1988. CO₂ record in the Byrd ice core 50,000-5,000 years BP. Nature, 331:609-611.
- Neftel, A., Moor, E., Oeschger, H. and Stauffer, B., 1985. Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries. Nature, 315:45-47.
- Schwander J. ,and Stauffer B. (1984) Age difference between polar ice and the air trapped in its bubbles. *Nature.* **311**, 45-47.
- Severinghaus J. P., Sowers T., Brook E. J., Alley R. B., and Bender M. L. (1998) Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. *Nature* **391**, 141-146.
- Shoji H. ,and Langway Jr. C. C. (1985) Mechanical properties of fresh ice core from Dye 3,
 Greenland. In *Greenland Ice Core: Geophysics, Geochemistry, and the Environment* (ed. C. C. LangwayJr., H. Oeschger and W. Dansgaard), Vol. 33, pp. 39-48. Am. Geophys. Union.
- Shuman, C. A., R. B. Alley, et al. (1995). "Temperature and accumulation at the Greenland Summit: Comparison of high-resolution isotope profiles and satellite passive microwave brightness temperature trends." J. Geophys. Res. 100: 9165-9177.
- Ram M. ,and Gayley R. I. (1991) Long-range transport of volcanic ash to the Greenland ice sheet. *Nature.* **349**, 401-404.
- * Sowers, T., Bender M., Labeyrie L., Martinson D., Jouzel J., Raynaud D., Pichon J. J., and Korotkevich Y. S. (1993) A 135,000-year Vostok-Specmap common temporal framework. *Paleoceanogr.* **8**, 699-736.
- * Sowers, T., and M. Bender, Climate records covering the last deglaciation, *Science*, *269*, 210-214, 1995.
- Zielinksi G. A., Mayewski P. A., Meeker L. D., Whitlow W., and Twickler M. S. (1996) Potential atmospheric impact of the Toba mega-eruption ~71,000 years ago. *Geophys. Res. Lett.* **23**, 837-840.

Also note: a volume of joint GISP2/GRIP results were published in JGR vol. 102 (1997, #C12 pp. 26315-26886). Many worthwhile results and summaries are contained within.