MIT OpenCourseWare
http://ocw.mit.edu
12.620J / 6.946J / 8.351J / 12.008 Classical Mechanics: A Computational Approach Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Graphics in Scmutils

We provide low-level support for plotting graphs and making simple drawings.

One can make a window, draw lines and points in the window, clear the window and close it.

A window is a data object that is made with the procedure frame. So, for example, one may make a window and give it the name win1 as follows:
(define win1 (frame 0 7-2 2))
The window so constructed will have horizontal coordinates that range from 0 (inclusive) to 7 (exclusive) and vertical coordinates that range from -2 (inclusive) to 2 (exclusive).

Execution of the frame procedure will construct the window and put it up on your screen. However, you must give it a name so that you can refer to the window to draw in it.

Given such a window, you can use it to plot a function:
(plot-function win1 sin 07 .01)
This will plot in the window win1 the curve described by (sin theta), in the interval from theta=0 to theta=7, sampling at intervals of delta-theta=. 01 .

The general pattern is
(plot-function <window> <procedure> <x-min> <x-max> <delta-x>)
where <procedure> takes one numerical argument and produces a numerical value.

We can overlay other plots in the same window:
(plot-function win1 cos 07 .01)
If we want, we can clear the window:
(graphics-clear win1)
And we can make the window go away:
(graphics-close win1)
After a window is closed it is no longer useful for plotting so it is necessary to make a new one using frame if you want to plot further.

There are other useful procedures for plotting.

```
(plot-point <window> <x> <y>)
```

drops a point at the coordinates (x, y) in the window.
(plot-line <window> <x0> <y0> <x1> <y1>)
draws a line segment from ($\mathrm{x} 0, \mathrm{y} 0$) to ($\mathrm{x} 1, \mathrm{y} 1$) in the window.
(plot-parametric <window> <procedure> <t-min> <t-max> <delta-t>)
draws a parametric curve. The <procedure> must implement a
function of one real argument (the parameter) and must return the cons pair of two numbers, the x and the y value for the given value of the parameter.

One can use the pointing device (mouse) to indicate a position. The procedure to interrogate the pointing device is:
(get-pointer-coordinates <window> <continuation>)
where <continuation> is a procedure that is called when the pointing device is positioned and a button is pressed. The continuation takes 3 arguments, the x-coordinate of the hit, the y-coordinate of the hit, and a designator of which mouse button was pressed.

For example:
(get-pointer-coordinates win1 list)
;Value: (.16791979949874686 .50375939849624060)
The value returned indicates that the left mouse button was pressed when the pointer was placed at the coordinates .1679... .5037...

The frame procedure takes a large number of optional arguments, allowing one to tailor a window to particular specifications. The default values shown below are for the X window system used with Unix.

```
(frame xmin ;minimum x coordinate. 0.0
    xmax ;maximum x coordinate. 1.0
    ymin ;minimum y coordinate. 0.0
    ymax ;maximum y coordinate. 1.0
    frame-width ;width of window 400 pixels
    frame-height ;height of window 400 pixels
    frame-x ;horizontal screen position }750\mathrm{ pixels
    ; of left edge of window.
    ;vertical screen position 0 pixels
    ; of top edge of window
    )
```

