12.540 Principles of the Global Positioning System Lecture 05

Prof. Thomas Herring

http://geoweb.mit.edu/~tah/12.540

Satellite Orbits

- Treat the basic description and dynamics of satellite orbits
- Major perturbations on GPS satellite orbits
- Sources of orbit information:
- SP3 format from the International GPS service
-Broadcast ephemeris message
- Accuracy of orbits and health of satellites

Dynamics of satellite orbits

- Basic dynamics is described by F=Ma where the force, F, is composed of gravitational forces, radiation pressure (drag is negligible for GPS), and thruster firings (not directly modeled).
- Basic orbit behavior is given by

Simple dynamics

- $\mathrm{GM}_{\mathrm{e}}=\mu=3986006 \times 10^{8} \mathrm{~m}^{3} \mathrm{~s}^{-2}$
- The analytical solution to the central force model is a Keplerian orbit. For GPS these are elliptical orbits.
- Mean motion, n , in terms of period P is given by

$$
n=\frac{2 \pi}{P}=\sqrt{\frac{\mu}{a^{3}}}
$$

- For GPS semimajor axis a $\sim 26400 \mathrm{~km}$

Solution for central force model

- This class of force model generates orbits that are conic sections. We will deal only with closed elliptical orbits.
- The orbit plane stays fixed in space
- One of the foci of the ellipse is the center of mass of the body
- These orbits are described Keplerian elements

Keplerain elements: Orbit plane

i Inclination
Ω Right Ascension of ascending node
ω Argument of perigee
v True anomaly

Keplerian elements in plane

Satellite motion

- The motion of the satellite in its orbit is given by

$$
\begin{aligned}
& M(t)=n\left(t-T_{0}\right) \\
& E(t)=M(t)+e \sin E(t)
\end{aligned}
$$

$$
v(t)=\tan ^{-1}\left[\frac{\sqrt{1-e^{2}} \sin E(t) /(1-e \cos E(t))}{(\cos E(t)-e) /(1-e \cos E(t))}\right]
$$

- T_{0} is time of perigee

True anomaly

Eccentric anomaly

Vector to satellite

- At a specific time past perigee; compute Mean anomaly; solve Kepler' s equation to get Eccentric anomaly and then compute true anomaly. See Matlab/truea.m
- Vector \mathbf{r} in orbit frame is

$$
\begin{aligned}
& \mathbf{r}=a\left\lfloor\begin{array}{c}
\cos E-e \\
\sqrt{1-e^{2}} \sin E
\end{array}\right\rfloor=r\left[\begin{array}{c}
\cos v \\
\sin v_{-}
\end{array}\right. \\
& r=a(1-e \cos E)=\frac{a\left(1-e^{2}\right)}{1+e \cos v}
\end{aligned}
$$

Final conversion to Earth Fixed XYZ

- Vector r is in satellite orbit frame
- To bring to inertial space coordinates or Earth fixed coordinates, use

$$
\begin{aligned}
& \mathbf{r}_{\mathbf{i}}=R_{3}(-\Omega) R_{1}(-i) R_{3}(-\omega) \mathbf{r} \\
& \mathbf{r}_{\mathrm{e}}=R_{3}(-\Omega+\theta) R_{1}(-i) R_{3}(-\omega) \mathbf{r}
\end{aligned}
$$

- This basically the method used to compute positions from the broadcast ephemeris

Perturbed motions

- The central force is the main force acting on the GPS satellites, but there are other significant perturbations.
- Historically, there was a great deal of work on analytic expressions for these perturbations e.g. Lagrange planetary equations which gave expressions for rates of change of orbital elements as function of disturbing potential
- Today: Orbits are numerically integrated although some analytic work on form of disturbing forces.

Perturbation from Flattening J_{2}

- The J_{2} perturbation can be computed from the Lagrange planetary equations

$$
\begin{aligned}
& \dot{\Omega}=-\frac{3}{2} n a_{e}^{2} \frac{\cos i}{a^{2}\left(1-e^{2}\right)^{2}} J_{2} \\
& \dot{\omega}=\frac{3}{4} n a_{e}^{2} \frac{5 \cos ^{2} i-1}{a^{2}\left(1-e^{2}\right)^{2}} J_{2} \\
& \dot{M}=n+\frac{3}{4} n a_{e}^{2} \frac{3 \cos ^{2} i-1}{a^{2} \sqrt{\left(1-e^{2}\right)^{3}}} J_{2}
\end{aligned}
$$

J_{2} Perturbations

- Notice that only $\Omega \omega$ and n are effected and so this perturbation results in a secular perturbation
- The node of the orbit precesses, the argument of perigee rotates around the orbit plane, and the satellite moves with a slightly different mean motion
- For the Earth, $\mathrm{J}_{2}=1.08284 \times 10^{-3}$

Gravitational perturbation styles

Parameter	Secular	Long period	Short period	
a	No	No	Yes	
e	No	Yes	Yes	
i	No	Yes	Yes	
Ω	Yes	Yes	Yes	
ω	Yes	Yes	Yes	
M	Yes	Yes	Yes	
02/21/12	12.540 Lec 05			

Other perturbation on orbits and approximate size

Term	Acceleration $\left(\mathbf{m} / \mathrm{sec}^{2}\right)$	Distance in 1/2 orbit (21600 sec)
Central	0.6	
$\mathrm{~J}_{2}$	5×10^{-5}	12 km
Other gravity	3×10^{-7}	70 m
Third body	5×10^{-6}	1200 m
Earth tides	10^{-9}	0.2 m
Ocean tides	10^{-10}	0.02 m
Drag	~ 0	~ 0
Solar radiation	10^{-7}	23 m
Albedo radiation	10^{-9}	0.2 m
0221/1/22	12.540 Lec 05^{17}	

GPS Orbits

- Orbit characteristics are
- Semimajor axis 26400 km (12 sidereal hour period)
- Inclination 55.5 degrees
- Eccentricity near 0 (largest 0.02)
-6 orbital planes with 4-5 satellites per plan
- Design lifetime is 6 years, average lifetime 10 years
- Generations: Block II/IIA 972.9 kg, Block IIR 1100 kg, Block IIF 1555.256 kg

Basic Constellation

Orbits shown in inertial space and size relative to Earth is correct

4-5 satellites in each plane

Broadcast Ephemeris

- Satellites transmit as part of their data message the elements of the orbit
- These are Keplerian elements with periodic terms added to account for solar radiation and gravity perturbations
- Periodic terms are added for argument of perigee, geocentric distance and inclination
- The message and its use are described in the ICD-GPS-200 icd200cw1234.pdf(page 106-121 in PDF)
- Selected part of document with ephemeris information icd200cw1234.Nav.pdf

Distribution of Ephemerides

- The broadcast ephemeris is decoded by all GPS receivers and for geodetic receivers the software that converts the receiver binary to an exchange format outputs an ASCII version
- The exchange format: Receiver Independent Exchange format (RINEX) has a standard for the broadcast ephemeris.
- Form [4-char][Day of year][Session].[yy]n e.g. brdc0120.02n

RINEX standard

- Description of RINEX standard can be found at |ftp://igscb.jpl.nasa.gov/igscb/data/format/rinex2.txt
- Homework number 1 also contains description of navigation file message (other types of RINEX files will be discussed later)
- 12.540_HW01.htm is first homework: Due Wednesday March 07, 2012.

MIT OpenCourseWare
|http://ocw.mit.edu

12.540 Principles of the Global Positioning System

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

