12.540 Principles of the Global Positioning System Lecture 04

Prof. Thomas Herring
http://geoweb.mit.edu/~tah/12.540

Review

- So far we have looked at measuring coordinates with conventional methods and using gravity field
- Today lecture:
- Examine definitions of coordinates
- Relationships between geometric coordinates
- Time systems
- Start looking at satellite orbits

Coordinate types

- Potential field based coordinates:
- Astronomical latitude and longitude
- Orthometric heights (heights measured about an equipotential surface, nominally mean-sea-level (MSL)
- Geometric coordinate systems
- Cartesian XYZ
- Geodetic latitude, longitude and height

Astronomical coordinates

- Astronomical coordinates give the direction of the normal to the equipotential surface
- Measurements:
- Latitude: Elevation angle to North Pole (center of star rotation field)
- Longitude: Time difference between event at Greenwich and locally

Astronomical Latitude

- Normal to equipotential defined by local gravity vector
- Direction to North pole defined by position of rotation axis. However rotation axis moves with respect to crust of Earth!
- Motion monitored by International Earth Rotation Service IERS http://www.iers.org/

Astronomical Latitude

Astronomical Latitude

- By measuring the zenith distance when star is at minimum, yields latitude
- Problems:
-Rotation axis moves in space, precession nutation. Given by International Astronomical Union (IAU) precession nutation theory
-Rotation moves relative to crust

Rotation axis movement

- Precession Nutation computed from Fourier Series of motions
- Largest term 9" with 18.6 year period
- Over 900 terms in series currently (see http://geoweb.mit.edu/~tah/mhb2000/JB000165 online.pdf)
- Declinations of stars given in catalogs
- Some almanacs give positions of "date" meaning precession accounted for

Rotation axis movement

- Movement with respect crust called "polar motion". Largest terms are Chandler wobble (natural resonance period of ellipsoidal body) and annual term due to weather
- Non-predictable: Must be measured and monitored

Evolution (IERS C01)

Evolution of uncertainty

Recent Uncertainties (IERS C01)

Astronomical Longitude

- Based on time difference between event in Greenwich and local occurrence
- Greenwich sidereal time (GST) gives time relative to fixed stars

Universal Time

- UT1: Time given by rotation of Earth. Noon is "mean" sun crossing meridian at Greenwich
- UTC: UT Coordinated. Atomic time but with leap seconds to keep aligned with UT1
- UT1-UTC must be measured

Length of day (LOD)

Recent LOD

LOD compared to Atmospheric Angular Momentum

LOD to UT1

- Integral of LOD is UT1 (or visa-versa)
- If average LOD is 2 ms , then 1 second difference between UT1 and atomic time develops in 500 days
- Leap second added to UTC at those times.

UT1-UTC

-Jumps are leap seconds, longest gap 1999-2006.
Historically had occurred at 12-18 month intervals
-Prior to 1970, UTC rate was changed to match UT1

Transformation from Inertial Space to Terrestrial Frame

- To account for the variations in Earth rotation parameters, as standard matrix rotation is made

Geodetic coordinates

- Easiest global system is Cartesian XYZ but not common outside scientific use
- Conversion to geodetic Lat, Long and Height

$$
\begin{aligned}
& X=(N+h) \cos \phi \cos \lambda \\
& Y=(N+h) \cos \phi \sin \lambda \\
& Z=\left(\frac{b^{2}}{a^{2}} N+h\right) \sin \phi \\
& N=\frac{a^{2}}{\sqrt{a^{2} \cos ^{2} \phi+b^{2}} \sin ^{2} \phi}
\end{aligned}
$$

Geodetic coordinates

- WGS84 Ellipsoid:
-a=6378137 m, b=6356752.314 m
$-f=1 / 298.2572221$ (=[a-b]/a)
- The inverse problem is usually solved iteratively, checking the convergence of the height with each iteration.
- (See Chapters 3 \&10, Hofmann-Wellenhof)

Heights

- Conventionally heights are measured above an equipotential surface corresponding approximately to mean sea level (MSL) called the geoid
- Ellipsoidal heights (from GPS XYZ) are measured above the ellipsoid
- The difference is called the geoid height

Geiod Heights

- National geodetic survey maintains a web site that allows geiod heights to be computed (based on US grid)
- http://www.ngs.noaa.gov/cgi-bin/GEOID STUFF/geoid99_prompt1.prl
- New Boston geiod height is -27.688 m

NGS Geoid 99 http://www.ngs.noaa.gov/GEOID/GEOID99/

NGS GEIOD09

Spherical Trigonometry

- Computations on a sphere are done with spherical trigonometry. Only two rules are really needed: Sine and cosine rules.
- Lots of web pages on this topic (plus software)
- http://mathworld.wolfram.com/SphericalTrigonometry.html is a good explanatory site

Basic Formulas

Basic applications

- If b and c are co-latitudes, A is longitude difference, a is arc length between points (multiply angle in radians by radius to get distance), B and C are azimuths (bearings)
- If b is co-latitude and c is co-latitude of vector to satellite, then a is zenith distance (90elevation of satellite) and B is azimuth to satellite
- (Colatitudes and longitudes computed from $\triangle X Y Z$ by simple trigonometry)

Summary of Coordinates

- While strictly these days we could realize coordinates by center of mass and moments of inertia, systems are realized by alignment with previous systems
- Both center of mass ($1-2 \mathrm{~cm}$) and moments of inertia (10 m) change relative to figure
- Center of mass is used based on satellite systems
- When comparing to previous systems be cautious of potential field, frame origin and orientation, and ellipsoid being used.

MIT OpenCourseWare
|http://ocw.mit.edu
12.540 Principles of the Global Positioning System

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

