12.540 Principles of the Global Positioning System Lecture 04

Prof. Thomas Herring

http://geoweb.mit.edu/~tah/12.540

Review

- So far we have looked at measuring coordinates with conventional methods and using gravity field
- Today lecture:
 - Examine definitions of coordinates
 - Relationships between geometric coordinates
 - Time systems
 - Start looking at satellite orbits

Coordinate types

- Potential field based coordinates:
 - -Astronomical latitude and longitude
 - Orthometric heights (heights measured about an equipotential surface, nominally mean-sea-level (MSL)
- Geometric coordinate systems
 - Cartesian XYZ
 - -Geodetic latitude, longitude and height

Astronomical coordinates

- Astronomical coordinates give the direction of the normal to the equipotential surface
- Measurements:
 - Latitude: Elevation angle to North Pole (center of star rotation field)
 - Longitude: Time difference between event at Greenwich and locally

Astronomical Latitude

- Normal to equipotential defined by local gravity vector
- Direction to North pole defined by position of rotation axis. However rotation axis moves with respect to crust of Earth!
- Motion monitored by International Earth Rotation Service IERS <u>http://www.iers.org/</u>

Astronomical Latitude

Astronomical Latitude

- By measuring the zenith distance when star is at minimum, yields latitude
- Problems:
 - Rotation axis moves in space, precession nutation.
 Given by International Astronomical Union (IAU) precession nutation theory
 - -Rotation moves relative to crust

Rotation axis movement

- Precession Nutation computed from Fourier Series of motions
- Largest term 9" with 18.6 year period
- Over 900 terms in series currently (see http://geoweb.mit.edu/~tah/mhb2000/JB000165_online.pdf)
- Declinations of stars given in catalogs
- Some almanacs give positions of "date" meaning precession accounted for

Rotation axis movement

- Movement with respect crust called "polar motion". Largest terms are Chandler wobble (natural resonance period of ellipsoidal body) and annual term due to weather
- Non-predictable: Must be measured and monitored

Evolution (IERS C01)

02/17/12

Evolution of uncertainty

02/17/12

Recent Uncertainties (IERS C01)

02/17/12

12.540 Lec 04

Astronomical Longitude

- Based on time difference between event in Greenwich and local occurrence
- Greenwich sidereal time (GST) gives time relative to fixed stars

$$GST = 1.0027379093UT1 + \vartheta_0 + \Delta \psi \cos \varepsilon$$

GMST Precession

$$\vartheta_0 = 24110.54841 + 8640184.812866 \underbrace{T}_{\text{Julian Centuries}} + 0.093104T^2 - 6.2 \times 10^{-6}T^3$$

Universal Time

- UT1: Time given by rotation of Earth. Noon is "mean" sun crossing meridian at Greenwich
- UTC: UT Coordinated. Atomic time but with leap seconds to keep aligned with UT1
- UT1-UTC must be measured

Length of day (LOD)

Recent LOD

12.540 Lec 04

LOD compared to Atmospheric Angular Momentum

02/17/12

LOD to UT1

- Integral of LOD is UT1 (or visa-versa)
- If average LOD is 2 ms, then 1 second difference between UT1 and atomic time develops in 500 days
- Leap second added to UTC at those times.

UT1-UTC

•Jumps are leap seconds, longest gap 1999-2006. Historically had occurred at 12-18 month intervals

•Prior to 1970, UTC rate was changed to match UT1

Transformation from Inertial Space to Terrestrial Frame

 To account for the variations in Earth rotation parameters, as standard matrix rotation is made

$$\underbrace{x_{i}}_{\text{Inertial}} = \underbrace{P}_{\text{Precession Nutation Spin}} \underbrace{N}_{\text{Polar Motion}} \underbrace{X}_{t}_{\text{Terrestrial}}$$

Geodetic coordinates

- Easiest global system is Cartesian XYZ but not common outside scientific use
- Conversion to geodetic Lat, Long and Height

 $X = (N+h)\cos\phi\cos\lambda$ $Y = (N+h)\cos\phi\sin\lambda$ $Z = (\frac{b^2}{a^2}N+h)\sin\phi$ $N = \frac{a^2}{\sqrt{a^2\cos^2\phi + b^2\sin^2\phi}}$

Geodetic coordinates

- WGS84 Ellipsoid:
 - -a=6378137 m, b=6356752.314 m
 - -f=1/298.2572221 (=[a-b]/a)
- The inverse problem is usually solved iteratively, checking the convergence of the height with each iteration.
- (See Chapters 3 &10, Hofmann-Wellenhof)

Heights

- Conventionally heights are measured above an equipotential surface corresponding approximately to mean sea level (MSL) called the geoid
- Ellipsoidal heights (from GPS XYZ) are measured above the ellipsoid
- The difference is called the geoid height

Geiod Heights

- National geodetic survey maintains a web site that allows geiod heights to be computed (based on US grid)
- http://www.ngs.noaa.gov/cgi-bin/GEOID_STUFF/geoid99_prompt1.prl
- New Boston geiod height is -27.688 m

NGS Geoid 99 http://www.ngs.noaa.gov/GEOID/GEOID99/

02/17/12

12.540 Lec 04

http://www.ngs.noaa.gov/GEOID/images/2009/geoid09conus.jpg

NGS GEIOD09

Spherical Trigonometry

- Computations on a sphere are done with spherical trigonometry. Only two rules are really needed: Sine and cosine rules.
- Lots of web pages on this topic (plus software)
- <u>http://mathworld.wolfram.com/SphericalTrigonometry.html</u> is a good explanatory site

Basic Formulas

12.540 Lec 04

Basic applications

- If b and c are co-latitudes, A is longitude difference, a is arc length between points (multiply angle in radians by radius to get distance), B and C are azimuths (bearings)
- If b is co-latitude and c is co-latitude of vector to satellite, then a is zenith distance (90elevation of satellite) and B is azimuth to satellite
- Colatitudes and longitudes computed from ∆XYZ by simple trigonometry)

Summary of Coordinates

- While strictly these days we could realize coordinates by center of mass and moments of inertia, systems are realized by alignment with previous systems
- Both center of mass (1-2cm) and moments of inertia (10 m) change relative to figure
- Center of mass is used based on satellite systems
- When comparing to previous systems be cautious of potential field, frame origin and orientation, and ellipsoid being used.

MIT OpenCourseWare http://ocw.mit.edu

12.540 Principles of the Global Positioning System Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.