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Possible cause of “weak” faults 
 

• Preexisting fracture 
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• Clay low ⇒ µ  
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• Pore fluid 
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How to get quantitative graphs? Make assumption!  
 
Zoback et al example. 
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Assume σ c constant. τ fault = c0 . 
Given β,c0 ,σ r  getα . 
Question: In far field, σ12 = cF .  

On fault σ12 = c0 . 
∂σ12
∂x1

> 0  -- How can this be? 
 
Another approach: Assume στ ≡ c0 , find σ r given α . 
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Pore fluid pressure model of fault weakening 
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Fault zone highly permeable 
 

Darcy flow ≈  heat flow 
Permeability ≈  conductivity 

p ≈ T   
 
Given source of water 
High permeability high p ⇒
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Question: 
• What are implication for stress direction in fault zone? 
• Is low ∆σ in fault zone consistent with large ∆σ outside? 

 

 
 

Fig. 6_8 
 
 

Stress Rotation, after Zoback et al, 1987 
 
The principal stress directions are observed to rotate in the vicinity of the San Andreas 
fault (SAF). In the far-field (e.g., Nevada), the maximum compressive stress is oriented at 
an angle to the fault trace β ~ 55°. But in the near field, this angle, now called α, is close 
to 85°. (Note that this is the same as the angle between the least compressive stress and 
the normal to the fault plane, the angle conventionally used in Mohr circle analysis.) 
 
Assume that in the far-field stress has σI = -68 MPa, σII (assumed vertical and lithostatic) 
= -136 MPa, and σIII = -204 MPa. (What style of faulting would this cause?) 
 
Assume that the fault has strength C0, so that σ12 becomes smaller approaching the fault. 
(How could this happen, given Newton's second law?). 
 
Also assume that the normal stress across the fault maintains its far-field value (σ22 in the 
coordinate system fixed to the fault, as shown in the diagram). Assume that σc remains 
the same. (Does this agree with the style of faulting and the folding near the SAF?) 
 
Then, from a Mohr's circle construction, it is straightforward to obtain a relation between 
α and β. 
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The coefficients of friction, µ, for a wide variety of rocks, are comparable, in the range 

0.6 – 0.9. The only rocks with low coefficients of friction are clays, which are not stable 

at the high pressures and temperatures characteristic of fault zones at depths of ~ 10 km 

where earthquakes nucleate. 

 

 

 



 

data from Byerlee, Pageoph, 116, 1978 
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Note: the Navier-Coulomb failure law, |τ| = µ|σ| + σ0, is also sometimes written 

 |τ| = µ|σ| + S0. 

For rocks, S0 ~ 0.1 - 4 kbars (10 - 400 MPa). How does this "breaking strength compare 

with the "frictional stress?" 

Plot stress predicted for the initiation of faulting as a function of depth, assuming that σ is 

the lithostatic stress. (Recall that the "lithostatic stress gradient ~ 1 kbar/3 km.) 
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So, if Byerlee's law is correct, and if the stress in the lithosphere is not too far from 

lithostatic, the shear stress on faults should be ~5 kbar at 15 km depth and about 250 kbar 

at 700 km depth. 
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How can we test this prediction? 

• Model stresses associated with holding up mountains (e.g., Himalayas > 1.5 kbar) 

• Stress drops associated with earthquakes (usually ~ 3- 300 bars, very rarely > 1 kbar) 

• Work available from convection (dynamic "engine," <~1 kbar 

• Heat flow in fault zones (frictional heating rate ~ τv => τ ~ 100 bars 



Big discrepancies here - a frontier region of geodynamics. 

 

Important factor - the role of pore fluid pressure in faults. 

Empirical results: For a pore fluid pressure p, the Navier-Coulomb failure law becomes: 

 |τ| = µ|σ+p| + S0 

(Note that because compressive pressure is positive, while compressive normal stress σ is 

negative, the pressure decreases the amplitude of the "effective normal stress" |σ+p|.) 

Graphically: 
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A qualitative explanation of the effect of pore fluid pressure is that the the fluid helps to 

"support" some of the normal stress that is otherwise carried by solid grains. Consider a 

simple model of a continuum made up of dry sand. Let fA represent the fraction of a 

surface area that is made up of solid grain contacts. Then for a macroscopic normal stress 

σ, the average (microscopic) normal stress at the solid grain contacts is σ/fA, since the 

pore space in between can support no normal tractions. (Of course, in places the actual 

value will be much larger than the average value.) If Admonton's law applies to the 



contacts, then the microscopic shear traction needed to cause failure is µσ/fA, and the 

macroscopic shear traction is τ=µσ. 

 

If pore fluid pressure is now introduced, the pore fluid will support some of the 

macroscopic normal stress, leading to a decrease to the normal stress at the grain 

contacts. 
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Adding pore fluid pressure effectively "stretches" the σn axis, giving, effectively, a lower 

coefficient of friction (except that angles no longer work out!) 
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An alternative explanation for deep earthquakes is that the failure envelope bends over at 
large σn. 
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Finally, let's consider a medium that is anisotropic – perhaps one which has a preexisting 
fracture at an angle θ to the least principal stress. (For a preexisting fracture, the strength 
S0 = 0.) Then if the double angle 2θ is within the region shown, the rock will fail along 
the preexisting fracture. 
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	Pore fluid pressure model of fault weakening

