MIT OpenCourseWare
http://ocw.mit.edu

12.510 Introduction to Seismology

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
\triangleleft Go back to the observations again and look at the deviation from the model.
Objective: we need to find a model that minimize δt
$\mathrm{T}_{\mathrm{obs}}=3 \mathrm{D}$ structure $+\underbrace{\text { error in source location }}+$ noise (instrument, measurement)
Hypocenter: to, x,y,z (or $\theta, \varphi, \mathrm{r}$)

$$
\Rightarrow \delta t=\delta t_{3 \mathbf{D}}+\delta t_{\text {mislocation }}+\delta t_{\text {noise }}
$$

Errors caused by the model and the source location are usually combined together, and the noise is assumed to be white, with a Gaussian distribution.

If we know the 1D model, we can apply Snell's law to estimate the geometry:

$$
T_{o b s}=\int_{\substack{3 D \\ \text { Ray } \\ \text { Path }}} \frac{1}{c(\underline{x})} d l
$$

Note that

$$
\nabla T(x)=\frac{1}{c(x)} \underline{k}
$$

If c change, the ray path changes. We end up with a nonlinear problem. Thus, we should try to linearize the inversion, using the Fermat's Principle.

If we change a little bit the ray path around the optimum, we'll end up with a small change in travel time. We have two kinds of "deviations" from the reference ray:

1. First contribution: effect of changes in velocity Δc.
2. Second contribution: effect of change in the ray path. Fermat's principle says that we can ignore it.

Linearization of the travel time

Travel time residual:

$$
\begin{aligned}
& \text { Observation }=\delta t_{3 D}=T_{\text {obs }}-T_{\text {ref }}=\int_{\substack{\text { true } \\
3 D \\
\text { structure }}} \frac{1}{c(\underline{x})} d l-\int_{\substack{\text { refererce } \\
\text { sJ } \\
\text { path }}} \frac{1}{c_{0}(\underline{x})} d l_{0} \\
& \stackrel{\text { Fermat's Princeple }}{\sim} \underset{\substack{\text { refererce } \\
\text { s. } \\
\text { path }}}{ } \frac{1}{c(\underline{x})} d l_{0}-\int_{\substack{\text { refererce } \\
\text { 3D } \\
\text { path }}} \frac{1}{c_{0}(\underline{x})} d l_{0} \\
& =\int_{\substack{\text { reference } \\
\text { 3D } \\
\text { path }}} \frac{\Delta c}{c_{0}^{2}} d l_{0}=\int_{\substack{\text { reference } \\
\text { 3D } \\
\text { path }}}\left(s(\underline{x})-s_{0}(\underline{x})\right) d l_{0} \\
& =\int_{\substack{\text { reference } \\
\text { 3D } \\
\text { path }}}(\Delta s(\underline{x})) d l_{0}
\end{aligned}
$$

In linearizing the problem, we get rid of the unknown ray. We can do our calculation in a reference earth model.
\diamond The travel time tomography is an iterative process:
$\diamond \quad$ Create 1D model
\diamond Ray tracing and get new rays in the model
\diamond Update ray geometry
\diamond Get the reference ray related to the 3D

$$
\delta \mathrm{t}=\mathrm{T}_{\mathrm{obs}}-\mathrm{T}_{\mathrm{ref}}(3 \mathrm{D})
$$

(The reference model does not have to be a 1D model.)

Linearization of the hypocenter mislocation

$$
\begin{aligned}
& \delta t_{\text {misloc }}=\frac{\partial T}{\partial t_{o}} \delta t_{o}+\frac{\partial T}{\partial x} \delta x+\frac{\partial T}{\partial y} \delta y+\frac{\partial T}{\partial z} \delta z \\
& \delta \otimes=\frac{\partial \otimes}{\partial \oplus} \delta \oplus
\end{aligned}
$$

with t_{0} the origin time, (x, y, z) the location of the earthquake.

Then we try to solve for $\Delta s, \delta t, \delta x, \delta y, \delta z$.

Inverse Problem

First, we need to discretize the problem, i.e. parameterization:

$$
\mu(\underline{r})=\sum_{k=1}^{M} \gamma_{k} h_{k}(\underline{r})
$$

γ_{k} : weight
h_{k} : basis function

For example, plane wave summation:

$$
\phi=\iiint \Phi(x, y, z, \omega) e^{i(\underline{k} \cdot \underline{x}-\omega t)} d \underline{k} d \omega
$$

Then, we inject μ into the equation:

$$
d_{i}=\sum_{k=1}^{M}\{\underbrace{\int \underbrace{}_{i}(\underline{r}) h_{k}(\underline{r})} d \underline{r}\} \gamma_{k}
$$

kernel projected on the basis function h

$$
d_{i}=\sum_{k=1}^{M} A_{i k} \gamma_{k} \text { for } \mathrm{i}=1,2, \ldots, \mathrm{~N} \text { data }
$$

$$
\underline{d}=\underline{A m}=\underline{m}=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{M}\right)
$$

where
G_{i} : Green functions, solution of a point source. We need to do a convolution with a point perturbation in order to get the observations.
M : Number of model parameters.
N : Number of observations.

In general, $M \neq N$. As a consequence, the matrix $\underset{=}{A}$ is not square.

M columns
Multiplying the equation by A^{T}, we can get the solution:
$\rightarrow \hat{m}=\left(A^{T} A\right)^{-1} A^{T} \underline{d}$ Generalized Least Squares inversion
$\left\|\hat{m}-\left(A^{T} A\right)^{-1} A^{T} \underline{d}\right\|=\varepsilon \rightarrow$ Goal is to minimize $\boldsymbol{\varepsilon}$.

Back to our specific inverse problem:

$$
\begin{aligned}
& \delta t=\int \Delta s \cdot d l \rightarrow \text { parametrize } \Delta \mathrm{s} \\
& \Delta s=\sum_{k=1}^{M} \gamma_{k} h_{k}
\end{aligned}
$$

One way is to take h_{k} as a series of cells/blocks, with a value for \underline{x} inside the cell k and zero otherwise. We have

$$
\delta t_{i}=\int \Delta s d l=\sum_{k=1}^{M_{\text {cell }}} \Delta s_{k}(d l)_{i k}
$$

where
i : event-station pair.
$(d l)_{i k}:$ path length.

Rewrite the equation in the matrix form:

$$
A_{i k} \cdot m=\left[\begin{array}{ccc}
\Delta l_{11} & \ldots & \Delta l_{1 M} \\
\vdots & \vdots & \vdots \\
\Delta l_{N 1} & \ldots & \Delta l_{N M}
\end{array}\right]\left[\begin{array}{c}
\Delta s_{1} \\
\vdots \\
\Delta s_{M}
\end{array}\right]=\left[\begin{array}{c}
\delta t_{1} \\
\vdots \\
\delta t_{N}
\end{array}\right]
$$

where each ray gives a row in the matrix.
We have an average wavespeed along the ray. In order to construct a model vector, we need to get data from different rays crossing each other.
A is a sparse matrix. If we look at one ray:

M~300,000
~ 20 layers
the ray samples ~ 100 cells
A will have only ~ 100 elements non-zero. The good thing about sparse matrix is that $A^{T} A$ is approximately diagonal. The problem is that there are many singularities, which make the inversion unstable (in that case, we need to add a damping factor or regularize the problem). One possibility is to not use cells of the same size. Consequently, it reduces the number of cells; the inverse matrix is less singular. Nevertheless, the computation time increases.

Another way is take h_{k} as spherical harmonics (in global seismology).

