MIT OpenCourseWare
http://ocw.mit.edu

12.510 Introduction to Seismology

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Continents: Quick review. Surface waves

Ground roll-acoustic $\ddot{p}=V \cdot \nabla \cdot\left(\frac{1}{p} \nabla p\right)$. where p is the pressure
Love waves $-\mathrm{SH} \ddot{u}_{y}=\mu$. $\nabla \cdot\left(\frac{1}{\mathrm{p}} \nabla \mathrm{u}_{\mathrm{y}}\right)$
Rayleigh waves P-SV
Quick review (refer to April, 4, 2008 for details)

ω - k domain

Ground roll dispersion relationship

Pre-cretical $\mathbf{p}<\frac{\mathbf{1}}{\mathbf{c}_{\mathbf{2}}}$

$$
\begin{equation*}
\eta_{2}=\sqrt{\frac{1}{c_{2}^{2}}-p^{2}} \in \mathbb{R} \tag{1}
\end{equation*}
$$

Post-critical $\mathbf{p}>\frac{\mathbf{1}}{\mathbf{c}_{\mathbf{2}}}$

if $\beta<\alpha$, there can be critical reflection and horizontal propagating p -wave. If $\mathrm{j}>\mathrm{j}_{\mathrm{c}}$ then there will be evanescence in the p -wave $(\mathrm{p}>1 / \alpha)$.

Both p-wave and s-wave horizontal propagation if $p>\frac{1}{\beta}>\frac{1}{\alpha}=\frac{1}{c}$. If a wave comes in with a $1 / \mathrm{c}$ that is larger than local $1 / \alpha$ and $1 / \beta$, the above will occur. This will also happen if the source emits a horizontal energy (rare).

$$
\begin{align*}
& P: \emptyset=A \exp \left(-\omega \eta_{\alpha} z\right) \exp (i \omega(p x-t)), \eta_{\alpha}=\sqrt{\frac{1}{\alpha^{2}}-p^{2}} \equiv_{p>\frac{1}{\alpha}} i \sqrt{p^{2}-\frac{1}{\alpha^{2}}}=i \widehat{\eta_{\alpha}}= \\
& i \sqrt{\left(\frac{1}{c}\right)^{2}-\left(\frac{1}{\alpha}\right)^{2}} ; \text { where } c=c_{R}=\frac{1}{p}\left(c_{R}: \text { phase velocity for Rayleigh waves }\right) \tag{4}\\
& S: \psi=\beta \exp \left(-\omega \eta_{\beta} z\right) \exp (i \omega(p x-t)), \eta_{\beta}=\sqrt{\frac{1}{\beta^{2}}-p^{2}} \equiv_{p>\frac{1}{\beta}} i \sqrt{p^{2}-\frac{1}{\beta^{2}}}=i \widehat{\eta_{\beta}} \tag{5}\\
& \quad=i \sqrt{\left(\frac{1}{c}\right)^{2}-\left(\frac{1}{\beta}\right)^{2}}
\end{align*}
$$

We follow the same "Recipe" we used before:

1. Potentials
2. Boundary Conditions (Kinematic and dynamic)
3. Zoeppritz equatios.

Boundary conditions

$$
\begin{equation*}
u(x, t)=\nabla \emptyset+\nabla \times \psi \tag{6}
\end{equation*}
$$

In this case

$$
\begin{equation*}
R_{s} \backslash, R_{s} \backslash p_{p}, R_{p} \backslash R_{p} \underbrace{}_{p} \tag{7}
\end{equation*}
$$

After some work we get:

$$
\begin{gather*}
A\left[(\lambda+2 \mu) \eta_{\alpha}^{2}+\lambda p^{2}\right]+2 \mu p \eta_{\beta}=0 \\
A\left(2 p \eta_{\alpha}\right)+B\left(p^{2}-\eta_{\beta}^{2}\right)=0 \tag{9}
\end{gather*}
$$

Zoepprtiz

$$
\left[\begin{array}{cc}
(\lambda+2 \mu) \eta_{\alpha}^{2}+\lambda p^{2} & 2 \mu p \eta_{\beta} \tag{10}\\
2 p \eta_{\alpha} & p^{2}-\eta_{\beta}^{2}
\end{array}\right]\left[\begin{array}{l}
A \\
B
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Trivial solution is
$\boldsymbol{A}=\boldsymbol{B}=\mathbf{0}$
Non-trivial solution leads to:

$$
\begin{equation*}
\left[(\lambda+2 \mu) \eta_{\alpha}^{2}+\lambda p^{2}\right]\left[p^{2}-\eta_{\beta}^{2}\right]-2 p \eta_{\alpha}\left(2 \mu p \eta_{\beta}\right)=0 \tag{11}
\end{equation*}
$$

This expression; Rayleigh wave denominator (Rayleigh, 1887), can be written looking at wave speeds, but usually done numerically assuming a Poisson's medium ($\lambda=\mu$) and $\alpha=\sqrt{3} \beta$. This scaling will help to simplify the above equation.

$$
\begin{align*}
& \eta_{\alpha}=\sqrt{\frac{1}{\alpha^{2}}-p^{2}}=\sqrt{\frac{1}{\alpha^{2}}-\left(\frac{1}{c}\right)^{2}} \tag{12}\\
& \eta_{\beta}=\sqrt{\frac{1}{\beta^{2}}-p^{2}}=\sqrt{\frac{1}{\beta^{2}}-\left(\frac{1}{c}\right)^{2}}
\end{align*}
$$

$$
\begin{aligned}
& \alpha=\sqrt{\frac{\lambda+2 \mu}{\rho}} \\
& \beta=\sqrt{\frac{\mu}{\rho}} \\
& \Rightarrow \rho \alpha^{2}=\lambda+2 \mu \\
& \Rightarrow \rho \beta^{2}=\mu \\
& {\left[\alpha^{2}\left(\frac{\eta_{\alpha}^{2}}{\rho^{2}}+1\right)-2 \beta^{2}\right]\left(1-\frac{\eta_{\beta}^{2}}{\rho^{2}}\right)-\left(\frac{4 \beta^{2} \eta_{\alpha} \eta_{\beta}}{\rho^{2}}\right)=0 } \\
& \Rightarrow \frac{\beta}{\alpha}
\end{aligned}
$$

Assumptions

Poisson medium: $\lambda=\mu$
Poisson ratio: $V=\frac{\lambda}{2(\lambda+\mu)}=0.25$
$\alpha=\sqrt{3} \beta$

$$
\left(\frac{c_{R}^{2}}{\beta^{2}}\right)^{3}-8\left(\frac{c_{R}^{2}}{\beta^{2}}\right)^{2}+\frac{56}{3}\left(\frac{c_{R}^{2}}{\beta^{2}}\right)-\frac{32}{3}=0
$$

Three solutions

1. $\left(\frac{c}{\beta}\right)^{2}=4 \rightarrow c=2 \beta, c>\beta, p=\frac{1}{c}<\frac{1}{p}, p<\frac{1}{\alpha}$

2. $\left(\frac{c}{\beta}\right)^{2}=2+\frac{2}{3} \sqrt{3}, \frac{1}{\alpha}<p<\frac{1}{\beta}, c^{2}=\left(2+\frac{2}{3} \sqrt{3}\right) \beta^{2}$

3. $\left(\frac{c}{\beta}\right)^{2}=\left(2-\frac{2}{3} \sqrt{3}\right), \frac{1}{\alpha}<p<\frac{1}{\beta}, c=\sqrt{2+\frac{2}{3} \sqrt{3}}, c<\beta, p=\frac{1}{c}>\frac{1}{\beta}>\frac{1}{\alpha},\left(\eta_{\alpha}=i \widehat{\eta_{\alpha}}, \eta_{\beta}=i \widehat{\eta_{\beta}}\right)$

Note: $\mathrm{c}_{\mathrm{R}} \sim 0.92 \beta$ which makes it about 10% slower than the shear wave velocity. This explains why the Rayleigh wave is slower than the love wave. The Love wave, at low frequency $\rightarrow \mathrm{c}_{2}$ and at high frequencies Love wave (at it's slowest) is $c_{1} \ldots$. Rayleigh wave is about 90% of the Love wave at the most.
exponential decay with depth

$$
\begin{gather*}
\emptyset=A \exp \left(-\omega \widehat{\eta_{\alpha}} z\right) \exp (i \omega(p x-t)) \\
\psi=\beta \exp \left(-\omega \widehat{\eta_{\beta}} z\right) \exp (i \omega(p x-t)) \tag{13}\\
u=\nabla \emptyset+\nabla \times \psi \\
\mathrm{u}_{\mathrm{x}}=\frac{\partial \emptyset}{\partial \mathrm{x}}-\frac{\partial \psi}{\partial \mathrm{z}} ; \mathrm{u}_{\mathrm{z}}=\frac{\partial \emptyset}{\partial \mathrm{z}}-\frac{\partial \psi}{\partial \mathrm{x}} \tag{14}\\
\mathrm{u}_{\mathrm{x}} \sim \mathrm{~A} \sin (\mathrm{kx}-\omega \mathrm{t}) \ldots \\
\mathrm{u}_{\mathrm{z}} \sim \mathrm{~A} \cos (\mathrm{kx}-\omega \mathrm{t}) \ldots
\end{gather*}
$$

$\boldsymbol{u}_{x}, \boldsymbol{u}_{z}$ are $\frac{\pi}{2}$ out of phase
Updated by: Sami Alsaadan
Sources: April 13, 2008 by Patricia Gregg. April 8, 2008 lecture.
"An Introduction to Seismology, Earthquakes, And Earth Structure" by Stein \&Wysession (2007).

