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12.510 Introduction to Seismology 

Surface Waves (Ground Roll) 

April 2, 2008 

Today we will look at the interaction of an acoustic wave (ground roll) 
with a layer over half space. We will consider travel time curves for acoustic 
waves and describe them using higher modes of surface wave propagation. 
We will also use a propagation matrix as a reflectivity method to calculate 
synthetic seismograms. 

Case 1: Layer over Source in a Half Space 
Lets look at what happens when we have 2 interfaces. We are working with 
acoustic waves, so we will take P = pressure field. Note that the methods 
used here can be used for SH waves as well. The same principles can be 
applied to P-SV waves, but the algebra becomes more complicated. 

Figure 1: Diagram of a source in a half space under a layer
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The wave equation for the acoustic case is 

P ̈ = k� · (
ρ

1 �P ) (1) 

with the displacement given by 

1 
u = 

ρω2 �P (2) 

This case becomes a bit more complicated than the simple reflection 
previously discussed. The analytical methods used to decribe the simple 
reflection begin to break down when multiple layers are introduced. 

´ ` We will renormalize the incoming wave to P2 = 1 and define P2 = R. 
Using the plane wave description, 

´ ` P = Pei(kxx−kz z−ωt) + Pei(kxx−kz z−ωt) 

Notice the positive and negative kzz terms to describe the vertical slow
´ ` ness, as well as the different amplitudes P and P . We want to know what 

is happening with respect to crossing the interface, so we will ignore the 
x-direction, leaving the eikz z terms and giving 

´ ` P = Pe−iνz + Pe−iνz 

where the vertical wave number is given by 

νz = kz = ω = ω cos i = ωη cz c 

´ ` P = Pe−iνz + Pe−iνz can be set up for each layer. We can solve for the 
pressure by taking the gradient in the z-direction: 

δP 1 Peiνz iν Peiνz Peiνz)Peiνz) = ( ` ´ uz = δz = 
ρω2 (iν ` − iν ´ 

ρω2 − 

To solve this system we will follow the steps: 

1. Look at Potentials (Pressure Field) 

2. Kinematic and Dynamic Boundary Conditions 

3. Zoeppritz equations 
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4. Solve for R and T 

At z=0, the welded interface, the stress is continuous so

´ ` ´ `
P2 + P2 = 1 + R = P1 + P1 

The displacement at z = 0 is given by 
iν u(0) = 

ρω2 (P̀  
1 − Ṕ  

1) 

which implies that at the free surface: 
P̀  

2 − Ṕ  
2 = ν2ρ1 (P̀  

1 − Ṕ  
1) = ν2 (R − 1)ν1ρ2 ρ2 

At the free surface z = −H 
Ṕ  

1e
−iν1H + P̀  

1e
iν1H = 0 where ν1 is the vertical wave number kz = c

ω 
z 
. 

⎤⎡The three equations above give the Zoeppritz matrix and we solve for R 
1 1 −1 

⎤ 

−ν2 

⎡
⎤
⎡ ⎢⎣ 

´
P1 1 ⎢⎣ 
⎥⎦ 

⎥⎦ ⎢⎣ 
⎥⎦ `
−ν1 ν1 

ρ1 
−1


0

P1 =
ρ1 ρ2 

e−iν1H eiν1H 0 R 
(1−η)+(1+η)e2iν1H 

R = 
(1+η)+(1−η)e2iν1H 

where ν = ρ1ν2 
ρ2ν1 

Some remarks on the reflection at the free surface: 
- The reflection coefficient is a complex number. In the cases we studied in 
previous lectures, R became complex when i = ic. 
- |R| = 1, which means that the energy is not stored in the upper layer 
but is eventually all — reflected back. E.g., if the input is a single spike, 
the output is a series of reverberations (see homework 2, problem 3). This 
occurs because of conservation of energy; if there is no source in the upper 
layer, there can be no residual trapped energy in the upper layer. The en
ergy is reflected from z =?H and both reflected and partially transmitted 
from z = 0 until it fully dissipates back into the half space. 
- There is a frequency?dependent phase shift ω

γ in the waveform, ie. R = 
γ 

e2iγ e i(kx−ωt+ 
ω ). 

Case 2: Source Within a Layer Over a Half Space 
The source within the layer is analagous to a source in a weathered layer, 
e.g. an induced source in exploration seismology or surface waves in earth
quake seismology. This scenario is similar to the Love waves case discussed 
in previous lectures. In the case of angles such that i¿ic (evanescent waves), 
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no energy will be transmitted into the half space.


Figure 2: Diagram of a source in a layer over a half space 

To solve this system we will follow the steps as before: 

1. Look at Potentials (Pressure Field) 

2. Kinematic and Dynamic Boundary Conditions 

3. Zoeppritz equations 

4. Solve for R and T 

Because stress must be continuous,

´ ` ´ ` ´ `
P = P1 + P1 = P2 + P2 = 0 + T ⇒ P1 + P1 − T = 0 

The total displacement must be continuous at the interface, so


ρω2 �P ρω (Pe` iνz + ´
u = 1 = iν Pe−iνz) 
ν1 ⇒ ρ1 

(P̀  
1 − Ṕ  

1) = ρ
ν2

2 
T 

⇒ (P̀  
1 − Ṕ  

1) = ρ
ρ
2

1

ν
ν
1

2 T = ηT 

⇒ P̀  
1 − Ṕ  

1 − ηT = 0 where η = ρ
ρ
2

1

ν
ν
1

2 = ρ
ρ
2

1

c
c
2

1 = z
z
2

1 and ρ1c1=acoustic 
impedance. 

At z = −H, 
P̀  

1 + e2iν1H Ṕ  
1 = 0 

Notice that the T in these equations is not the conventional T as before 
because it is evanescent. In contrast to previous cases, we can now form a 
homogeneous set of Zoeppritz equations: ⎡⎤⎡ ⎤⎡⎤

`
1 1 −1
 P1 0 ⎢⎣ 
⎢⎣ 

⎥⎦ 
⎥⎦ ⎢⎣ 

⎥⎦ ´
1 −1 
2iν1η 

0
−ζ 
0 T 0 

P1 =

1
 e
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The solution of this system depends on the layer thickness (H), the ver
tical wave number (ν), the direction of the rays (ω cos i ), and the impedence c 
contrast (η = z

z
2

1 ). To obtain the nontrivial solution to this system, we must 
set the determinant of the 3x3 term to zero, leading to ⎡ ⎤ 

1 1 −1

det ⎣⎢ 1 −1 −η ⎦⎥ = 0


1 e2iν1H 0


⇒ ηe2iν1H − e2iν1H − η − 1 = 0 

⇒ (η − 1)e2iν1H = η + 1 

2iν1H η+1 e = ⇒ η−1 

We know that in the complex plane, generally, e−2iθ = a−b , giving a+b 

tan θ = −a
ib . Using this, we can rewrite our nontrivial solution as tan (ν1H) = 

1 = ρ2ν1 
iη iρ1ν2 

tan(ν1H) = 1 = ρ2ν1 ⇒ iη iρ1ν2 

where ν1 = ω ( c
1 
1 
)2 − p2 and ν2 = ω ( c

1 
2 
)2 − p2. 

The dispersion relationship for ground roll (which is the same as 
the dispersion relationship for Love waves) is thus given by 

tan 
� 
ωH 

� 
( c

1 
1 
)2 − p2 

� 
= 

ρ2 � 
( 

c
1

1 
)2−p2


ρ1 ( 1 )2−p2

c2


For a given frequency and layer thickness H, for certain directions given 
by p = sin 

c1 

i1 = sin 
c2 

i2 and known c1, c2, we can solve this system. 

Given fixed ω , ie. i1 = 90o solves the dispersion equation, ie. the direct 
wave is a solution to the dispersion equation. See Figure 3. 
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Figure 3: Diagram of (1) a direct wave and (2) a critical wave


Figure 4: Graphical representation of the dispersion relationship for ground 
roll. 
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For all postcritical angles i, or c
1 
2 

< p < c
1 
1 
, we have locked modes, where 

all of the energy stays in the upper layer. The fundamental mode labeled at 
1 represents the p-value for a direct wave. The subsequent intersections of c1 

the left side solutions and the right side solutions give progressively higher 
modes (overtones) as p decreases to c

1 
2 
. For precritical angles i, or p < c

1 
2 
, 

energy is lost due to wave transmission into the half space, so we get leaky 
modes. 

Also, because the spacing between the asymptotes of the left side so
lutions is dependent on ω, for any given frequency, there is a finite set of 
solutions (i.e. modes) to the dispersion relation. Each mode has a specific 
horizontal slowness and take?off angle because the waves can only propagate 
in a way that creates constructive interference. 

As the frequency decreases and wavelength increases, the spacing be
tween the left side solution curves increases, thus decreasing the number of 
overtones. Similarly, as the frequency increases, the number of overtones 
also increases. A plot of these overtones as frequency approaches infinity 
will approach a continuous graph along the plot of the right side solution. 
Another way to think about overtones is to visualize the direct wave on Fig
ure 3 with a wavelength equal to the distance between the source and the 
receiver. This is a high wavelength with a low frequency, and in this case 
a plot of the dispersion relation would show that the left side solutions are 
spaced so far apart that few, if any, overtones exist, i.e. given the partic
ular long wavelength and H-value, there are few other incident angles that 
will result in a coincidence between the path of the wave and the receiver 
(constructive interference). As the frequency increases and wavelength de
creases, there will be more incident angles such that the path of the wave 
coincides with the receiver and results in constructive interference. 

We begin RAY THEORY briefly... 
As ω → ∞ infinite continuous spectrum of solutions with phase velocity 
cn = k

ω 
n 
, kn = c

ω 
n 

kn c
1 
n 

cos 
c
in= = 

So we can simply use Snell’s Law. It holds now that there is no concept of 
interference. 
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