Simple (Ideal) Ternary Solution

Binary:

$$
\bar{G}=X_{A} \mu_{A}^{o}+X_{B} \mu_{B}^{o} \quad+\alpha R T\left(X_{A} \ln X_{A}+X_{B} \ln X_{B}\right)
$$

Ternary:

$$
\bar{G}=X_{A} \mu_{A}^{o}+X_{B} \mu_{B}^{o}+\underline{X_{C} \mu_{C}^{o}}+\alpha R T\left(X_{A} \ln X_{A}+X_{B} \ln X_{B}+\underline{X_{C} \ln X_{C}}\right)
$$

Notes:

1. $X_{C}<1$, so $\ln X_{C}<0$. Therefore, adding component C increases $\bar{S}_{\text {config. }}$, and so makes G more negative.
2. $\sum_{i=A}^{C} X_{i} \mu_{i}^{o}$ defines a triangular plane: mechanical mixing.

Like a binary, we evaluate μ 's (say, μ_{A}) by "correcting" \bar{G} at the compotition of interest towards composition A :
Binary:

or

$$
=G+\left(1-X_{A}\right) \frac{d G}{d X_{A}}
$$

Ternary:

$$
\mu_{A}=G+X_{B}\left(\frac{\partial G}{\partial X_{A}}\right)_{X_{C}}+X_{C}\left(\frac{\partial G}{\partial X_{A}}\right)_{X_{B}}
$$

or

$$
\mu_{A}=G+\left(1-X_{A}\right)\left(\frac{\partial G}{\partial X_{A}}\right)_{X_{B} / X_{C}}
$$

where X_{B} / X_{C} is a constant ratio.

Symmetrical Ternary

Assume $G_{e x}$ is a polynomial of degree 2 in X_{2} and X_{3}.

$$
\begin{aligned}
& G_{e} x=A+B X_{2}+C X_{3}+D X_{2}^{2}+E X_{2} X_{3}+F X_{3}^{2} \\
& \text { as } X_{1} \rightarrow 1, G_{e x} \rightarrow 0=A \\
& \text { as } X_{2} \rightarrow 1, G_{e x} \rightarrow 0=B+D \\
& \qquad D=-B \\
& \text { as } X_{3} \rightarrow 1, G_{e x} \rightarrow 0=C+F \\
& \qquad F=-C \\
& G_{e x}=B X_{2}+C X_{3}-B X_{2}^{2}+E X_{2} X_{3}-C X_{3}^{2}
\end{aligned}
$$

Reintroducing X_{1}

$$
\begin{aligned}
& G_{e x}=B X_{2} X_{1}+C X_{3} X_{1}+(B+C+E) X_{2} X_{3} \\
& W_{G_{12}}=B \\
& W_{G_{23}}=B+C+E \\
& W_{G_{13}}=C \\
& G_{e x}=W_{G_{12}} X_{2} X_{1}+W_{G_{13}} X_{3} X_{1}+W_{G_{23}} X_{2} X_{3} \\
& \alpha R T \ln \gamma_{1}=W_{12} X_{2}^{2}+W_{13} X_{3}^{2}+X_{2} X_{3}\left(W_{12}+W_{13}-W_{23}\right)
\end{aligned}
$$

Asymmetrical Ternary

Assume $G_{e x}$ is a polynomial of degree 3 in X_{2} and X_{3}.

$$
\begin{aligned}
& G_{e x}=A+B X_{2}+C X_{3}+D X_{2}^{2}+E X_{2} X_{3}+F X_{3}^{2}+G X_{2}^{3}+H X_{2} X_{3}^{2}+I X_{2}^{2} X_{3}+J X_{3}^{3} \\
& \text { as } X_{1} \rightarrow 1, G_{e x} \rightarrow 0=A \\
& \text { as } X_{2} \rightarrow 1, G_{e x} \rightarrow 0=B+D+G \\
& \qquad B=-D-G \\
& \text { as } X_{3} \rightarrow 1, G_{e x} \rightarrow 0=C+F+J \\
& \qquad C=-F-J \\
& \\
& \qquad \begin{array}{c}
G_{e x}= \\
G_{e x}= \\
\quad \\
\left.\quad+X_{1}^{2} X_{2}(-D-G)+X_{2}^{2} X_{3}(-D+E-F-2 G+I-J)+X_{2}\right)+E X_{2} X_{3}+F(-D-2 G)+X_{3}^{2}\left(-D X_{3}^{2}(-F-J)+X_{3}\right)+G\left(X_{2}^{3}-X_{2}\right)+H X_{2} X_{3}^{2}+I X_{2}^{2} X_{3}+J\left(X_{3}^{3}-X_{3}\right) \\
\quad+X_{1} X_{2} X_{3}(-2 D+E-2 F) \\
G_{e x}=
\end{array} W_{G_{12}} X_{1}^{2} X_{2}+W_{G_{21}} X_{2}^{2} X_{1}+W_{G_{13}} X_{1}^{2} X_{3}+W_{G_{31}} X_{3}^{2} X_{1}+W_{G_{23}} X_{2}^{2} X_{3}+W_{G_{32}} X_{3}^{2} X_{2}
\end{aligned}
$$

And setting

$$
\begin{aligned}
& W_{12} \equiv-D-2 G \\
& W_{21} \equiv-D-G \\
& W_{13} \equiv-F-2 J \\
& W_{31} \equiv-F-J \\
& W_{23} \equiv-D+E-F-G+H-2 J \\
& W_{32} \equiv-D+E-F-2 G+I-J \\
& W_{123} \equiv G-\frac{1}{2} H-\frac{1}{2} I+J
\end{aligned}
$$

We obtain

$$
\begin{aligned}
G_{e x} & =W_{12}\left(X_{1} X_{2}\right)\left(X_{2}+\frac{1}{2} X_{3}\right)+W_{21}\left(X_{1} X_{2}\right)\left(X_{1}+\frac{1}{2} X_{3}\right)+W_{13}\left(X_{1} X_{3}\right)\left(X_{3}+\frac{1}{2} X_{2}\right) \\
& +W_{31}\left(X_{1} X_{3}\right)\left(X_{1}+\frac{1}{2} X_{2}\right)+W_{23}\left(X_{2} X_{3}\right)\left(X_{3}+\frac{1}{2} X_{1}\right)+W_{32}\left(X_{2} X_{3}\right)\left(X_{2}+\frac{1}{2} X_{1}\right) \\
& +W_{123}\left(X_{1} X_{2} X_{3}\right)
\end{aligned}
$$

Ternary Solutions

$$
\begin{aligned}
& G_{e x}=\alpha R T X_{1} \ln \gamma_{1}+\alpha R T X_{2} \ln \gamma_{2}+\alpha R T X_{3} \ln \gamma_{3} \\
& \left(\frac{\partial G_{e x}}{\partial X_{1}}\right)_{X_{3}}=\alpha R T \ln \gamma_{1}-\alpha R T \ln \gamma_{2} \\
& \left(\frac{\partial G_{e x}}{\partial X_{1}}\right)_{X_{2}}=\alpha R T \ln \gamma_{1}-\alpha R T \ln \gamma_{3}
\end{aligned}
$$

Obtain $G_{e x}$ as a function of the partials and γ_{1} only.

$$
\begin{aligned}
& G_{e x}=\alpha R T X_{1} \ln \gamma_{1}-X_{2}\left(\frac{\partial G_{e x}}{\partial X_{1}}\right)_{X_{3}}+\alpha R T X_{2} \ln \gamma_{1}-X_{3}\left(\frac{\partial G_{e x}}{\partial X_{1}}\right)_{X_{2}}+\alpha R T X_{3} \ln \gamma_{1} \\
& \alpha R T \ln \gamma_{1}=G_{e x}+X_{2}\left(\frac{\partial G_{e x}}{\partial X_{1}}\right)_{X_{3}}+X_{3}\left(\frac{\partial G_{e x}}{\partial X_{1}}\right)_{X_{2}} \\
& \alpha R T \ln \gamma_{2}=G_{e x}+X_{1}\left(\frac{\partial G_{e x}}{\partial X_{2}}\right)_{X_{3}}+X_{3}\left(\frac{\partial G_{e x}}{\partial X_{2}}\right)_{X_{1}} \\
& \alpha R T \ln \gamma_{3}=G_{e x}+X_{1}\left(\frac{\partial G_{e x}}{\partial X_{3}}\right)_{X_{2}}+X_{2}\left(\frac{\partial G_{e x}}{\partial X_{3}}\right)_{X_{1}}
\end{aligned}
$$

Unmixing Mechanisms for Non-Ideal Solutions

B

Above: Free-energy versus composition and temperature versus composition diagrams illustrating the exsolution mechanisms of nucleation and growth and of spinodal decomposition. (A) shows freeenergy curves $g_{P b c a}$ and $g_{C 2 / c}$ for the strain-free phases, and $\phi_{C 2 / c}$ for the strained phases, at temperature T. The compositions of the two coexisting pairs of strain-free phases indicated by the common tangents (labeled strain-free), are "Opx" and "Aug (strain-free)," and "Pig (strain-free)" and "Aug (strain-free)." The compositions of the coexisting pair of coherent phases, indicated by the common tangent (labeled coherent), are given by the position of "Pig" and "Aug." (B) shows a freeenergy curve for $C 2 / c$ phases strained by coherency. (C) shows the pseudobinary phase diagram. The coherent spinodal and chemical spinodal are curves defined by the loci of the inflection points (s), on the free-energy curves $\phi_{C 2 / c}$ and $g_{C 2 / c}$, respectively, as a function of temperature. The coherent solvus and strain-free solvus are curves defined by the loci of the common-tangent points of free-energy curves $\phi_{C 2 / c}$ and $g_{C 2 / c}$, respectively. The orthopyroxene-augite strain-free solvus (outermost curves) is defined by the common-tangent points on free-energy curves $g_{P b c a}$ and $g_{C 2 / c}$.

