12.335/12.835 EXPERIMENTAL ATMOSPHERIC CHEMISTRY, FALL 2014

TOPIC 1 ATMOSPHERIC PHOTOCHEMISTRY and AIR POLLUTION

MODELING GASES AND AEROSOLS

RONALD PRINN & MARIA ZAWADOWICZ SEPTEMBER 30, 2014

GASEOUS CHEMICAL RATE EXPRESSIONS IN MODELS

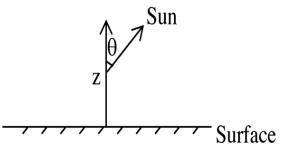
Consider the simplified ozone layer chemical reactions: $O_2 + hv \xrightarrow{J_1} O + O$ $O + O_2 + M \xrightarrow{I} O_3 + M$ $O_3 + hv \xrightarrow{J_1} O_2 + O$ $O + O_3 \xrightarrow{k} O_2 + O_2$ (catalysed!)

The relevant chemical reaction rates are expressed using <u>first</u> (J_i) , <u>second</u> (k) and <u>third</u> (l) <u>order rate constants</u>:

$$\frac{d[i]}{dt}\left(\frac{\text{molecule}}{\text{cm}^{3} \text{ sec}}\right) = \begin{cases} -J_{i}[i] \quad \left(\text{sec}^{-1} \cdot \text{molecule} \cdot \text{cm}^{-3}\right) \\ -k_{ij}[i][j] \quad \left(\text{sec}^{-1} \cdot \text{cm}^{3} \cdot \text{molecule}^{-1} \cdot \left(\text{molecule} \cdot \text{cm}^{-3}\right)^{2}\right) \\ -l_{ijM}[i][j][M] \quad \left(\text{sec}^{-1} \cdot \text{cm}^{6} \cdot \text{molecule}^{-2} \cdot \left(\text{molecule} \cdot \text{cm}^{-3}\right)^{3}\right) \end{cases}$$

The chemical rate constants (k,l) are measured in the laboratory.

Some typical expressions for their dependence on temperature (T) and density ([M]) are:


$$k = A \exp\left(-\frac{B}{T}\right) \qquad (\text{measure A and } B)$$
$$l = l\left(T_{\text{ref}}, [M]\right) \left(\frac{T}{T_{\text{ref}}}\right)^{-\alpha} \qquad (\text{measure } l\left(T_{\text{ref}}, [M]\right) \text{ and } \alpha)$$

The <u>rate constant for photodissociation</u> is calculated in a non-scattering atmosphere using:

$$J_{i} = \int_{\lambda_{1}}^{\lambda_{2}} \sigma_{i}(\lambda) \phi_{i}(\lambda) I(\infty) \exp\left[-\sum_{j=1}^{N} \sigma_{j}(\lambda) \frac{M_{j}(z)}{\cos \theta}\right] d\lambda$$

where

$$\begin{split} &\sigma_i(\lambda) = \text{ absorption cross-section at wavelength } \lambda \; \left(\text{cm}^2 \cdot \text{molecule}^{-1} \right) \\ &\phi_i(\lambda) = \text{ photodissociation yeild (dimensionless)} \\ &\lambda_2 - \lambda_1 = \text{ width of electronic absorption band} \\ &I(\infty) = \text{ solar photon flux at altitude } z = \infty \; \left(\text{photon} \cdot \text{cm}^{-2} \cdot \text{sec}^{-1} \right) \\ &N = \text{ number of gases (j) absorbing at wavelength } \lambda \\ &M_j(z) = \text{ molecules of j per unit area above } z \; \left(\text{molecule} \cdot \text{cm}^{-2} \right) \\ &\theta = \; \text{solar zenith angle} \end{split}$$

Summary of gaseous chemical rate expressions for production and loss of species i including surface sources and sinks:

(1) J_i[i] where J_i can be derived from UV measurements

(1) k_{ij}[i][j] where k_{ij} is given

(1) I_{ijm}[i][j][m] where I_{ijm} is given

(2) $\Phi_{i \text{ sink}}^{\text{surface}} = w_{dep}[i]$ where w_{dep} is given

(1) $\Phi_{i \text{ emissions}}^{\text{surface}}$ either given or estimated from modelmeasurement comparison

AEROSOL PHYSICAL RATE EXPRESSIONS IN MODELS

 $\frac{dN_k}{dt}$ = Rate of change of aerosol number density

- (with size between k and k + dk)
- = Emission (surface and in situ)
- + Condensation of precursor gases
- + Complete evaporation of water from cloud droplets
- + Coagulation of smaller aerosols
- + Fragmentation of larger aerosols
- ± Sedimentation (net into & out of layer)
- Coagulation with any other aerosols
- Coalescence (into water droplets)
- Fragmentation by collisions with other aerosols
- Deposition (all surfaces)
- Rainout (to surface)
- "Activation" to form cloud droplets

 $\frac{dN_{coag}}{dN_{coag}} = -k_{coag}N^{T}$ dt $\frac{dN_{coal}}{dN_{coal}} = -k_{coal}N$ dt $\frac{dN_{dep}}{dep} = -v_{dep}N$ dt $dN_{\underline{rain}}$ dt

etc.

DIAGNOSTIC EQUATIONS ASSUME A PHOTOCHEMICAL STEADY STATE (PSSA)

Recall PSSA equations ignore influence of meteorology so valid only when wind speed u ~ 0

In PSSA: rate of loss (L_i) = rate of production (P_i) e. g. for the ozone chemical reaction set including NOx and HOx chemistry:

(1) NO + $O_3 \rightarrow NO_2 + O_2$ (2) NO₂ + hv -> NO + O (3) O + O_2 + M -> O_3 + M (4) O_3 + hv -> O_2 + O (5) NO₂ + OH + M -> HNO₃ + M (6) OH + CO -> H + CO₂ (7) H + O_2 + M -> HO₂ + M (8) HO₂ + NO -> OH + NO₂

We have for NO, HO₂, H and O concentrations:

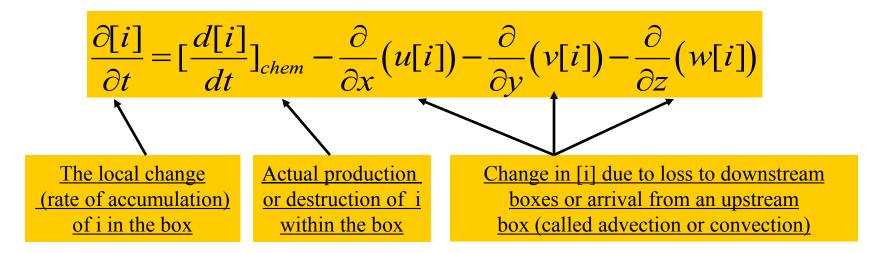
 $k_1[O_3][NO] + k_8[HO_2][NO] = J_2[NO_2]$ i.e. $[NO_2]/[NO] = (k_1[O_3] + k_8[HO_2])/J_2$

 $k_8[HO_2][NO] = I_7[H][O_2][M]$ i.e. [HO_2] /[H] = $I_7[O_2][M]/(k_8[NO])$

 $I_7[H][O_2][M] = k_6[CO][OH]$ i.e. [H]/[OH] = k_6[CO]/($I_7[O_2][M]$)

 $I_3[O][O_2][M] = J_2[NO_2] + J_4[O_3]$ i.e. [O]/[O_3] = (J_2[NO_2]/[O_3] + J_4)/(I_3[O_2][M])

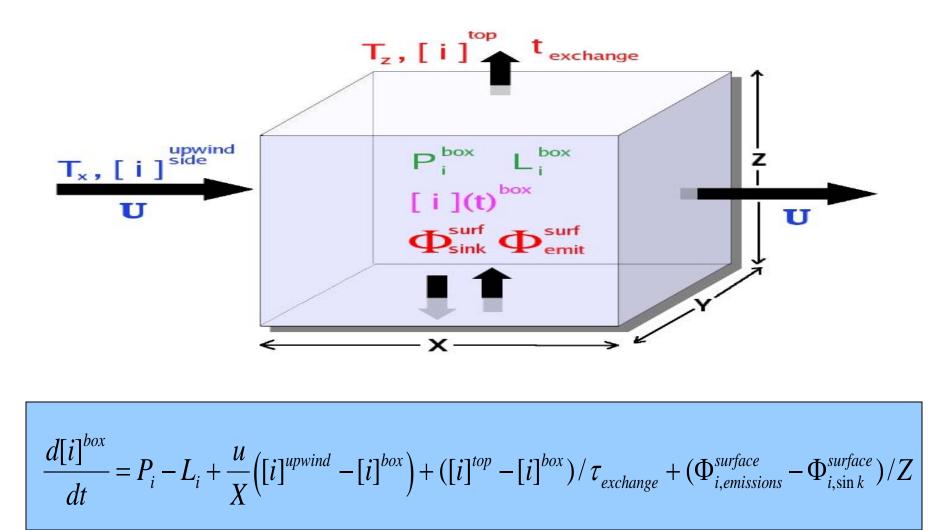
Recall the PSSA analytical solution when we consider NOx but not HOx chemistry:


 $[O_3]^2 + ([NO]_0 - [O_3]_0 + \frac{k_1}{k_3})[O_3] - \frac{k_1}{k_3}([O_3]_0 + [NO_2]_0) = 0 \qquad [O_3]_2 - \frac{1}{2}([NO]_0 - [O_3]_0 + \frac{k_1}{k_3}) + \frac{1}{2}\left[([NO]_0 - [O_3]_0 + \frac{k_1}{k_3})^2 + 4\frac{k_1}{k_3}([O_3]_0 + [NO_2]_0)\right]^{\frac{1}{2}}$

$$[NO_2] = [NO_2]_0 + [O_3]_0$$

 $-[O_3]$

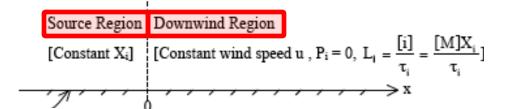
$$[O_3] = \frac{k_1[NO_2]}{k_3[NO]}$$


PROGNOSTIC (CONTINUITY) EQUATIONS TAKE ACCOUNT OF PROGNOSTIC CHEMISTRY AND TRANSPORT BY WINDS

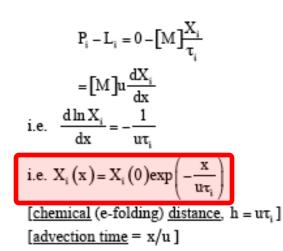
HYBRID CHEMICAL KINETIC EQUATIONS

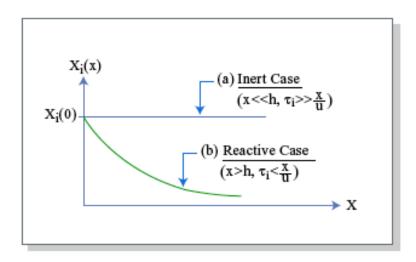
Use prognostic equations, (d[i]/dt) _{chemistry} = P_i - L_i) for long lived species like [O_x] (=[O] + [O₃]) and [NO_x](=[NO + [NO₂])
Use diagnostic (steady state) equations, P_i = L_i for short lived species like O, NO, H and HO₂ to provide the ratios [O]/[O₃], [NO₂]/[NO], [HO₂]/[H] and [H]/[OH]
(3) Assume [HO_x] = [H] + [OH] + [HO₂] ~ [HO₂] is given (4) Use observed values for [CO]
(5) Use lowest observed [NO_x] and [O₃] as boundary conditions for NO_x and O_x

A SIMPLE PHOTOCHEMICAL BOX MODEL to simulate time-varying concentrations of trace gases and aerosols using the PROGNOSTIC CONTINUITY EQUATION



EXAMPLE: ANALYTICAL SOLUTION TO THE CONTINUITY EQUATION RELATING MOLE FRACTION (X_i) OF i=NO (as a function of distance (x) from a source region) ASSUMING A CONSTANT HORIZONTAL WIND SPEED (u), A PHOTOCHEMICAL STEADY-STATE, A ONE DIMENSIONAL (x AXIS) MODEL and LOSS DUE TO NO + $O_3 \rightarrow NO_2 + O_2$ WITH [O_3] >> [NO]


$STEADY \square STATE$:


$$\frac{d[i]^{downwind}}{dt} = 0 = P_i - L_i - u\frac{d[i]}{dx} = P_i - L_i - [M]u\frac{dX_i}{dx}$$

 $(X_i = [i]/[M] = mole_fraction)$

Define T(NO) = 1/(k[O₃] where k is rate constant for reaction of NO (e.g. from engine exhausts) with ozone

INCORPORATING METEOROLOGY IN THE BOX MODEL

1. USE THE u MEASUREMENTS TO ALIGN THE MODEL x AXIS AND USE IN THE BOX MODEL ADVECTION TERMS. 2. USE THE T & u MEASUREMENTS TO CALCULATE A RICHARDSON NUMBER TO HELP CHOOSE SUITABLE t_{exchange} VALUES.

T OP OF BOUNDARY LAYER

© Cory Cripe. Some rights reserved. License: CC BY-NC 3.0. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

POTENTIAL TEMPERATURE (θ) $\theta = T(\frac{P_0}{P})^{R/C_p}$ where T = absolute temperature, P = pressure, R = gas constant, and C_p = heat capacity at constant pressure P **RICHARDSON NUMBER (Ri)** $\operatorname{Ri} = g \frac{\partial \ln \theta}{\partial z} [(\frac{\partial u}{\partial z})^2 + (\frac{\partial v}{\partial z})^2]^{-1}$ $Ri > 0 \rightarrow stable$ (if $Ri > \frac{1}{4}$ get laminar flow) $Ri < 0 \rightarrow$ unstable (if $|Ri| \leq 1$ then forced convection and if |Ri| > 1 then free convection) $Ri = 0 \rightarrow neutral$ MOIST POTENTIAL TEMPERATURE $(\theta_{\rm F})$ $\theta_{\rm E} = \theta \exp(\frac{{\rm Lw}_{\rm s}}{{\rm C}~{\rm T}})$ where w_s = water vapor density, and L = latent heat of vaporization

 $\frac{\partial \theta_E}{\partial z} \le 0 \rightarrow \text{moist convective instability}$

3. USE TEMPERATURE SOUNDINGS OR HAZE LAYER HEIGHT TO ESTIMATE Z

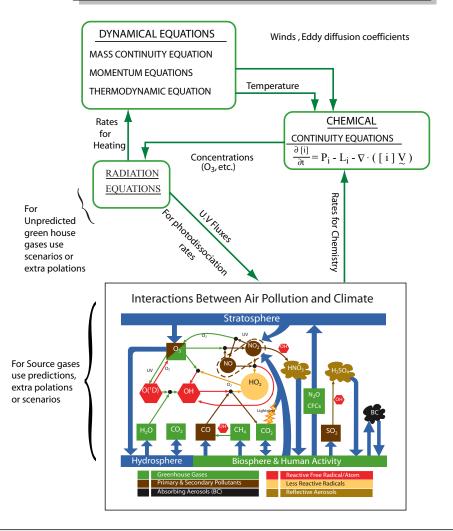
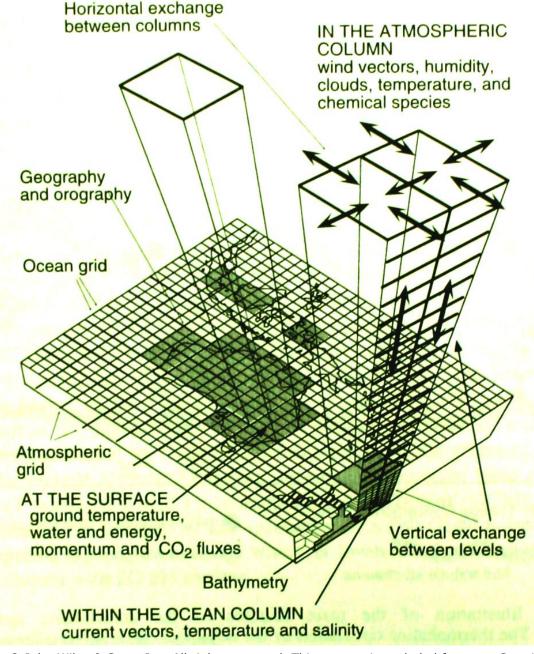


Figure by MIT OpenCourseWare.

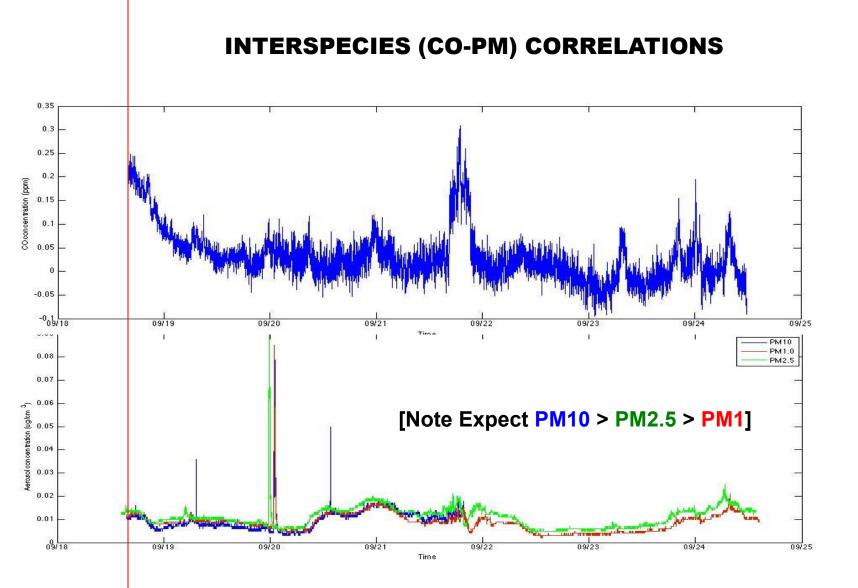
TRANSPORT, CHEMISTRY AND RADIATION COMPONENTS IN COMPLEX 3D MODELS

UV fluxes for photodissociation rates

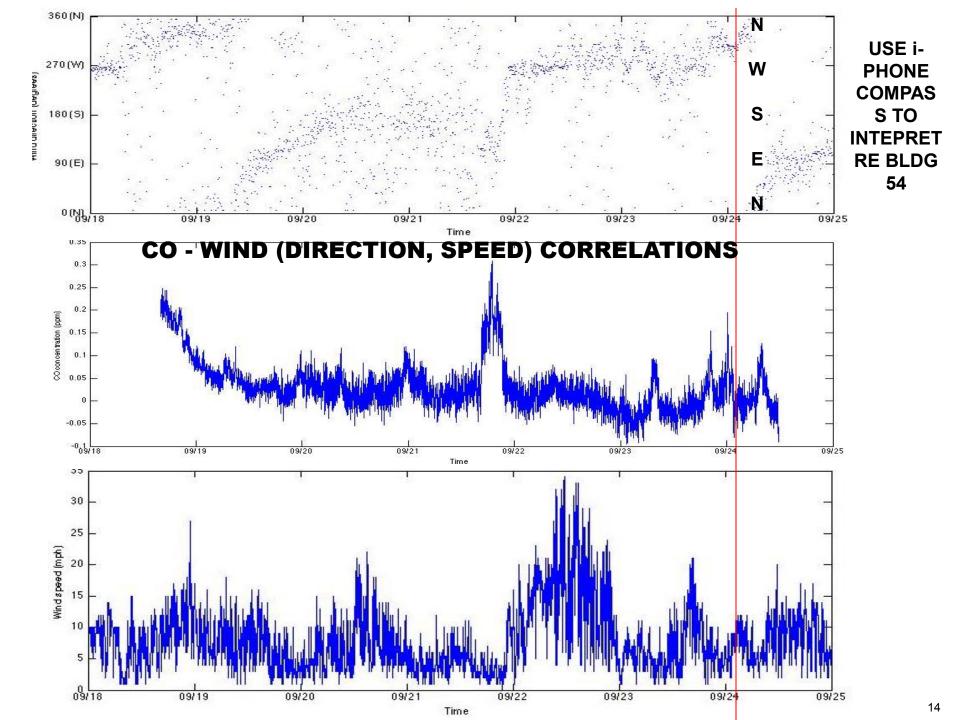
For all species involving OH in their chemistry need to include:

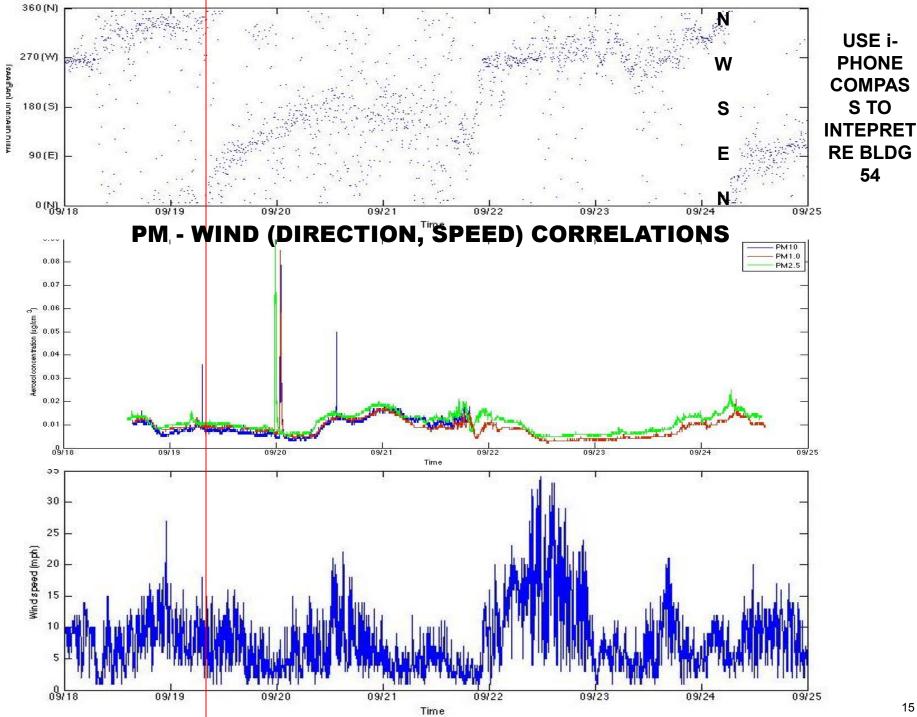

- 1. $O_3, O_2, O(^1D)$
- 2. H,OH,HO₂,H₂O₂, with latter 3 in gas and aqueous phase
- 3. NO, NO₂, NO₃, N₂O₅, HNO₃ with latter 2 in gas and aqueous phase
- 4. CH₄, CH₃, CH₃O₂, CH₃O, CH₃O₂H, CH₂O, CHO, CO (also <u>selected</u> <u>heavier hydrocarbons</u> such as <u>isoprene and terpenes in forested areas</u> and <u>anthropogenic hydrocarbons in urban areas</u>)

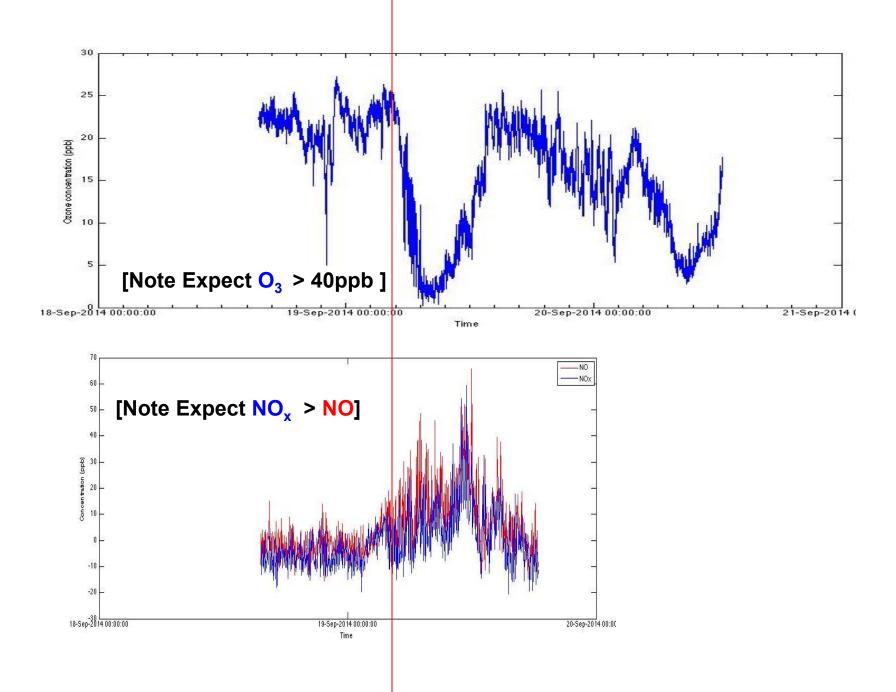
The spatial grid

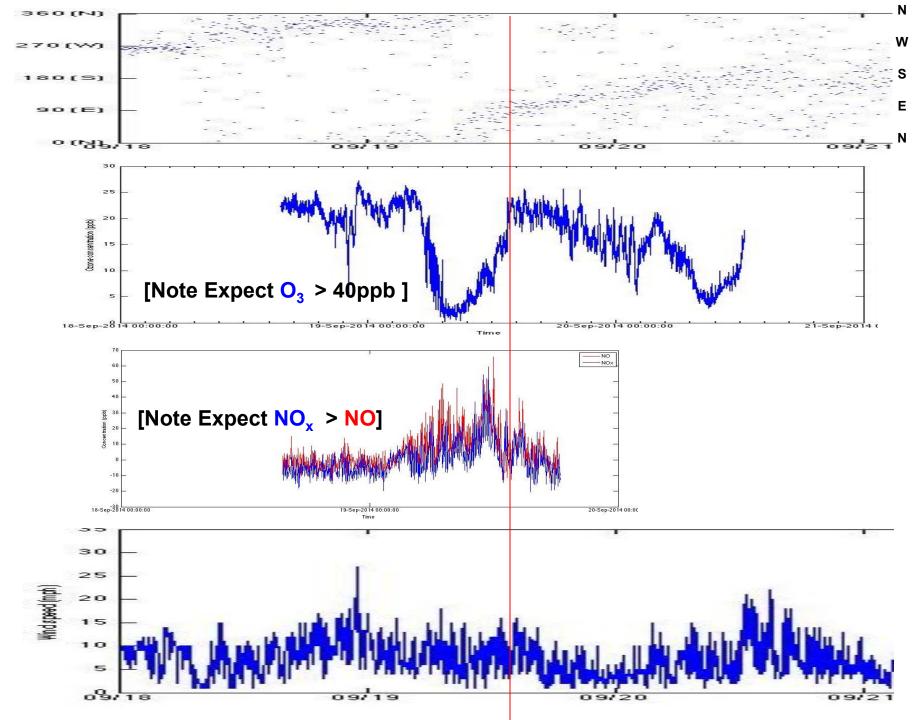

We divide the earth's atmosphere into a finite number of boxes (grid cells).

Assume that each variable has the same value throughout the box.


Write a budget for each each box, defining the changes within the box, and the flows between the boxes.




© John Wiley & Sons, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



MIT OpenCourseWare http://ocw.mit.edu

12.335 / 12.835 Experimental Atmospheric Chemistry Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.