12.335/12.835 EXPERIMENTAL ATMOSPHERIC CHEMISTRY, FALL 2014

TOPIC 1
 ATMOSPHERIC PHOTOCHEMISTRY and AIR POLLUTION

MODELING GASES AND AEROSOLS

RONALD PRINN \& MARIA ZAWADOWICZ SEPTEMBER 30, 2014

GASEOUS CHEMICAL RATE EXPRESSIONS IN MODELS

Consider the simplified ozone layer chemical reactions:
$\mathrm{O}_{2}+\mathrm{h} \nu \xrightarrow{\mathrm{J}_{1}} \mathrm{O}+\mathrm{O}$
$\mathrm{O}+\mathrm{O}_{2}+\mathrm{M} \xrightarrow{\mathrm{L}} \mathrm{O}_{3}+\mathrm{M}$
$\mathrm{O}_{3}+\mathrm{h} \mathrm{\nu} \xrightarrow{\mathrm{~J}_{1}} \mathrm{O}_{2}+\mathrm{O}$
$\mathrm{O}+\mathrm{O}_{3} \xrightarrow{\mathrm{k}} \mathrm{O}_{2}+\mathrm{O}_{2} \quad$ (catalysed!)
The relevant chemical reaction rates are expressed using first $\left(\mathrm{J}_{\mathrm{i}}\right)$, second (k) and third (l) order rate constants:

$$
\frac{\mathrm{d}[\mathrm{i}]}{\mathrm{dt}}\left(\frac{\text { molecule }}{\mathrm{cm}^{3} \mathrm{sec}}\right)=\left\{\begin{array}{l}
-\mathrm{J}_{\mathrm{i}}[\mathrm{i}] \quad\left(\mathrm{sec}^{-1} \cdot{\text { molecule } \left.\cdot \mathrm{cm}^{-3}\right)}^{-\mathrm{k}_{\mathrm{ij}}[\mathrm{i}][\mathrm{j}] \quad\left(\mathrm{sec}^{-1} \cdot \mathrm{~cm}^{3} \cdot \text { molecule }^{-1} \cdot\left(\text { molecule } \cdot \mathrm{cm}^{-3}\right)^{2}\right)}\right. \\
-\mathrm{l}_{\mathrm{ijM}}[\mathrm{i}][\mathrm{j}][\mathrm{M}] \quad\left(\mathrm{sec}^{-1} \cdot \mathrm{~cm}^{6} \cdot \text { molecule }^{-2} \cdot\left(\text { molecule } \cdot \mathrm{cm}^{-3}\right)^{3}\right)
\end{array}\right.
$$

The chemical rate constants (k, l) are measured in the laboratory.
Some typical expressions for their dependence on temperature (T) and density ($[\mathrm{M}]$) are:

$$
\begin{array}{r}
\mathrm{k}=\mathrm{A} \exp \left(-\frac{\mathrm{B}}{\mathrm{~T}}\right) \quad(\text { measure } \mathrm{A} \text { and } \mathrm{B}) \\
\mathrm{l}=\mathrm{l}\left(\mathrm{~T}_{\text {ref }},[\mathrm{M}]\right)\left(\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{ref}}}\right)^{-\alpha} \quad\left(\text { measure } \mathrm{l}\left(\mathrm{~T}_{\mathrm{ref},}[\mathrm{M}]\right) \text { and } \alpha\right)
\end{array}
$$

The rate constant for photodissociation is calculated in a non-scattering atmosphere using:
$J_{i}=\int_{\lambda_{1}}^{\lambda_{2}} \sigma_{i}(\lambda) \phi_{i}(\lambda) I(\infty) \exp \left[-\sum_{j=1}^{N} \sigma_{j}(\lambda) \frac{M_{j}(\mathrm{z})}{\cos \theta}\right] d \lambda$
where
$\sigma_{\mathrm{i}}(\lambda)=$ absorption cross-section at wavelength $\lambda\left(\mathrm{cm}^{2} \cdot\right.$ molecule $\left.^{-1}\right)$
$\phi_{\mathrm{i}}(\lambda)=$ photodissociation yeild (dimensionless)
$\lambda_{2}-\lambda_{1}=$ width of electronic absorption band
$I(\infty)=$ solar photon flux at altitude $z=\infty\left(\right.$ photon $\left.\cdot \mathrm{cm}^{-2} \cdot \sec ^{-1}\right)$
$\mathrm{N}=$ number of gases (j) absorbing at wavelength λ
$\mathrm{M}_{\mathrm{j}}(\mathrm{z})=$ molecules of j per unit area above $\mathrm{z}\left(\right.$ molecule $\left.\cdot \mathrm{cm}^{-2}\right)$
$\theta=$ solar zenith angle

Summary of gaseous chemical rate expressions for production and loss of species i including surface sources and sinks:
(1) $\boldsymbol{J}_{i}[i]$ where \boldsymbol{J}_{i} can be derived from UV measurements
(1) $k_{i j}[i][j]$ where $k_{i j}$ is given
(1) $I_{\mathrm{ijm}}[\mathrm{i}][\mathrm{j}][\mathrm{m}]$ where $\mathrm{I}_{\mathrm{ijm}}$ is given
(2) $\Phi_{i \text { sink }}^{\text {sufface }}=\mathbf{w}_{\text {dep }}[i]$ where $\mathbf{w}_{\text {dep }}$ is given
(1) Φ_{i} surface sisions either given or estimated from modelmeasurement comparison

AEROSOL PHYSICAL RATE EXPRESSIONS IN MODELS

$\frac{d N_{k}}{d t}=$ Rate of change of aerosol number density
(with size between k and $k+d k$)
$=$ Emission (surface and in situ)

+ Condensation of precursor gases
+ Complete evaporation of water from cloud droplets
+ Coagulation of smaller aerosols
+ Fragmentation of larger aerosols
\pm Sedimentation (net into \& out of layer)
- Coagulation with any other aerosols
- Coalescence (into water droplets)
- Fragmentation by collisions with other aerosols
- Deposition (all surfaces)
- Rainout (to surface)
- "Activation" to form cloud droplets

$$
\frac{d N_{c o a g}}{d t}=-k_{c o a g} N^{*} N
$$

$$
\frac{d N_{c o a l}}{d t}=-k_{c o a l} N^{* *} N
$$

$$
\frac{d N_{d e p}}{d t}=-v_{d e p} N
$$

$$
\frac{d N_{r a i n}}{d t}=-\frac{N}{\tau_{r a i n}}
$$

etc.

DIAGNOSTIC EQUATIONS ASSUME A PHOTOCHEMICAL STEADY STATE (PSSA)

Recall PSSA equations ignore influence of meteorology so valid only when wind speed u ~ 0
In PSSA: rate of loss $\left(L_{i}\right)=$ rate of production $\left(P_{i}\right)$
e. g. for the ozone chemical reaction set including NOx and HOx chemistry:
(1) $\mathrm{NO}+\mathrm{O}_{3}-\mathrm{NO}_{2}+\mathrm{O}_{2}$
(2) $\mathrm{NO}_{2}+\mathrm{hv}->\mathrm{NO}+\mathrm{O}$
(3) $\mathrm{O}+\mathrm{O}_{\mathbf{2}}+\mathrm{M}->\mathrm{O}_{\mathbf{3}}+\mathrm{M}$
(4) $\mathrm{O}_{3}+$ hv $\rightarrow \mathrm{O}_{2}+\mathrm{O}$
(5) $\mathrm{NO}_{2}+\mathrm{OH}+\mathrm{M}->\mathrm{HNO}_{3}+\mathrm{M}$
(6) $\mathrm{OH}+\mathrm{CO}->\mathrm{H}+\mathrm{CO}_{2}$
(7) $\mathbf{H}+\mathrm{O}_{\mathbf{2}}+\mathrm{M}->\mathrm{HO}_{\mathbf{2}}+\mathrm{M}$
(8) $\mathrm{HO}_{\mathbf{2}}+\mathrm{NO}->\mathbf{O H}+\mathrm{NO}_{\mathbf{2}}$

We have for $\mathrm{NO}, \mathrm{HO}_{\mathbf{2}}, \mathbf{H}$ and \mathbf{O} concentrations:
$k_{1}\left[\mathrm{O}_{3}\right][\mathrm{NO}]+k_{8}\left[\mathrm{HO}_{2}\right][\mathrm{NO}]=\mathrm{J}_{2}\left[\mathrm{NO}_{2}\right]$ i.e. $\left[\mathrm{NO}_{2}\right] /[\mathrm{NO}]=\left(k_{1}\left[\mathrm{O}_{3}\right]+k_{8}\left[\mathrm{HO}_{2}\right]\right) / \mathrm{J}_{2}$
$\mathrm{k}_{8}\left[\mathrm{HO}_{2}\right][\mathrm{NO}]=\mathrm{I}_{7}[\mathrm{H}]\left[\mathrm{O}_{2}\right][\mathrm{M}]$ i.e. $\left[\mathrm{HO}_{2}\right] /[\mathrm{H}]=\mathrm{I}_{7}\left[\mathrm{O}_{2}\right][\mathrm{M}] /\left(\mathrm{k}_{8}[\mathrm{NO}]\right)$
$\mathrm{I}_{7}[\mathrm{H}]\left[\mathrm{O}_{2}\right][\mathrm{M}]=\mathbf{k}_{6}[\mathrm{CO}][\mathrm{OH}]$
i.e. $[\mathrm{H}] /[\mathrm{OH}]=\mathrm{k}_{6}[\mathrm{CO}] /\left(\mathrm{I}_{7}\left[\mathrm{O}_{2}\right][\mathrm{M}]\right)$
$\mathrm{I}_{3}[\mathrm{O}]\left[\mathrm{O}_{2}\right][\mathrm{M}]=\mathrm{J}_{2}\left[\mathrm{NO}_{2}\right]+\mathrm{J}_{4}\left[\mathrm{O}_{3}\right]$
i.e. $[\mathrm{O}] /\left[\mathrm{O}_{3}\right]=\left(\mathrm{J}_{2}\left[\mathrm{NO}_{2}\right] /\left[\mathrm{O}_{3}\right]+\mathrm{J}_{4}\right) /\left(\mathrm{I}_{3}\left[\mathrm{O}_{2}\right][\mathrm{M}]\right)$

Recall the PSSA analytical solution when we consider NOx but not HOx chemistry:

$$
\left[\mathrm{O}_{3}\right]^{2}+\left(\left[\mathrm{NO}_{0}-\left[\mathrm{O}_{3}\right]_{0}+\frac{\mathrm{k}_{1}}{\mathrm{k}_{3}}\right)\left[\mathrm{O}_{3}\right]-\frac{\mathrm{k}_{1}}{\mathrm{k}_{3}}\left(\left[\mathrm{O}_{3}\right]_{0}+\left[\mathrm{NO}_{2}\right]_{0}\right)=0 \quad\left[\mathrm{O}_{3}\right]=-\frac{1}{2}\left(\left[\mathrm{NO}_{0}-\left[\mathrm{O}_{3}\right]_{0}+\frac{\mathrm{k}_{1}}{k_{3}}\right)+\frac{1}{2}\left[\left[\mathrm{NO}_{0}-\left[\mathrm{O}_{3}\right]_{0}+\frac{k_{1}}{k_{3}}\right)^{2}+4 \frac{k_{1}}{k_{3}}\left(\left[\mathrm{O}_{3}\right]_{0}+\left[\mathrm{NO}_{2}\right]_{0}\right)\right]^{\frac{1}{2}}\right.\right.
$$

$$
\left[\mathrm{O}_{3}\right]=\frac{\mathrm{k}_{1}\left[\mathrm{NO}_{2}\right]}{\mathrm{k}_{3}[\mathrm{NO}]}
$$

$$
\left[\mathrm{NO}_{2}\right]=\left[\mathrm{NO}_{2}\right]_{0}+\left[\mathrm{O}_{3}\right]_{0}-\left[\mathrm{O}_{3}\right]
$$

PROGNOSTIC (CONTINUITY) EQUATIONS TAKE ACCOUNT OF PROGNOSTIC CHEMISTRY AND TRANSPORT BY WINDS

The local change
(rate of accumulation)
of i in the box

Actual production or destruction of i within the box

Change in [i] due to loss to downstream
boxes or arrival from an upstream box (called advection or convection)

HYBRID CHEMICAL KINETIC EQUATIONS

(1) Use prognostic equations, ($d[i] / d t$) chemistry $=P_{i}-L_{i}$) for long lived species like $\left[\mathrm{O}_{\mathrm{x}}\right]\left(=[\mathrm{O}]+\left[\mathrm{O}_{3}\right]\right)$ and $\left[\mathrm{NO}_{\mathrm{x}}\right]\left(=\left[\mathrm{NO}+\left[\mathrm{NO}_{2}\right]\right)\right.$
(2) Use diagnostic (steady state) equations, $P_{i}=L_{i}$ for short lived species like $\mathrm{O}, \mathrm{NO}, \mathrm{H}$ and HO_{2} to provide the ratios $[\mathrm{O}] /\left[\mathrm{O}_{3}\right]$,
$\left[\mathrm{NO}_{2}\right] /[\mathrm{NO}],\left[\mathrm{HO}_{2}\right] /[\mathrm{H}]$ and $[\mathrm{H}] /[\mathrm{OH}]$
(3) Assume $\left[\mathrm{HO}_{\mathrm{x}}\right]=[\mathrm{H}]+[\mathrm{OH}]+\left[\mathrm{HO}_{2}\right] \sim\left[\mathrm{HO}_{2}\right]$ is given
(4) Use observed values for [CO]
(5) Use lowest observed [NO_{x}] and [O_{3}] as boundary conditions for NO_{x} and O_{x}

A SIMPLE PHOTOCHEMICAL BOX MODEL
 to simulate time-varying concentrations of trace gases and aerosols using the PROGNOSTIC CONTINUITY EQUATION

$$
\frac{d[i]^{b o x}}{d t}=P_{i}-L_{i}+\frac{u}{X}\left([i]^{\text {upind }}-[i]^{\text {box }}\right)+\left([i]^{\text {bop }}-[i]^{\text {box }}\right) / \tau_{\text {exchange }}+\left(\Phi_{i, \text { iemisisions }}^{\text {surce }}-\Phi_{i, \text { sink }}^{\text {surfee }}\right) / Z
$$

EXAMPLE: ANALYTICAL SOLUTION TO THE CONTINUITY EQUATION RELATING MOLE FRACTION $\left(X_{i}\right)$ OF $i=N O$ (as a function of distance (x) from a source region) ASSUMING A CONSTANT HORIZONTAL WIND SPEED (u), A
PHOTOCHEMICAL STEADY-STATE, A ONE DIMENSIONAL (x AXIS) MODEL and LOSS DUE TO NO $+\mathrm{O}_{3} \rightarrow \mathrm{NO}_{2}+\mathrm{O}_{2}$ WITH [O O_{3}] $>$ [NO]
STEADY \square STATE :
$\frac{d[i]^{\text {downwind }}}{d t}=0=P_{i}-L_{i}-u \frac{d[i]}{d x}=P_{i}-L_{i}-[M] u \frac{d X_{i}}{d x}$
$\left(X_{i}=[i] /[M]=\right.$ mole_fraction $)$

Define $\mathrm{T}(\mathrm{NO})=1 /\left(\mathrm{k}\left[\mathrm{O}_{3}\right]\right.$ where k is rate constant for reaction of NO (e.g. from engine exhausts) with ozone

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{i}}-\mathrm{L}_{\mathrm{i}}=0-[\mathrm{M}]^{\frac{\mathrm{X}_{\mathrm{i}}}{\tau_{\mathrm{i}}}} \\
& =[\mathrm{M}] \mathrm{u} \frac{\mathrm{dX}}{\mathrm{dx}}
\end{aligned}
$$

i.e. $\frac{d \ln X_{i}}{d x}=-\frac{1}{u \tau_{i}}$
i.e. $X_{i}(x)=X_{i}(0) \exp \left(-\frac{x}{u \tau_{i}}\right)$
[chemical (e-folding) distance, $\mathrm{h}=\mathrm{u} \tau_{1}$]

[advection time $=x / u$]

INCORPORATING METEOROLOGY IN THE BOX MODEL

1. USE THE u MEASUREMENTS TO ALIGN THE MODEL x AXIS AND USE IN THE BOX MODEL ADVECTION TERMS.
2. USE THE T \& u MEASUREMENTS TO CALCULATE A RICHARDSON NUMBER TO HELP CHOOSE SUITABLE $t_{\text {exchange }}$ VALUES.

T OP OF BOUNDARY LAYER

© Cory Cripe. Some rights reserved. License: CC BY-NC 3.0. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

POTENTIAL TEMPERATURE (θ)
$\theta=\mathrm{T}\left(\frac{\mathrm{P}_{0}}{\mathrm{P}}\right)^{\mathrm{R} / \mathrm{C}_{\mathrm{p}}}$ where $\mathrm{T}=$ absolute temperature, $\mathrm{P}=$ pressure,

$$
\mathrm{R}=\text { gas constant, and }
$$

$\mathrm{C}_{\mathrm{p}}=$ heat capacity at constant pressure P
RICHARDSON NUMBER (Ri)
$\mathrm{Ri}=\mathrm{g} \frac{\partial \ln \theta}{\partial \mathrm{z}}\left[\left(\frac{\partial \mathrm{u}}{\partial \mathrm{z}}\right)^{2}+\left(\frac{\partial \mathrm{v}}{\partial \mathrm{z}}\right)^{2}\right]^{-1}$
$\mathrm{Ri}>0 \rightarrow$ stable (if $\mathrm{Ri}>\frac{1}{4}$ get laminar flow)
$\mathrm{Ri}<0 \rightarrow$ unstable (if $|\mathrm{Ri}| \leq 1$ then forced convection and if $|\mathrm{Ri}|>1$ then free convection)
$\mathrm{Ri}=0 \rightarrow$ neutral
MOIST POTENTIAL TEMPERATURE (θ_{E})
$\theta_{\mathrm{E}}=\theta \exp \left(\frac{\mathrm{Lw}_{\mathrm{s}}}{\mathrm{C}_{\mathrm{p}} \mathrm{T}}\right)$ where $\mathrm{w}_{\mathrm{s}}=$ water vapor density, and $\mathrm{L}=$ latent heat of vaporization
$\frac{\partial \theta_{E}}{\partial z} \leq 0 \rightarrow$ moist convective instability

COMPONENTS OF ATMOSPHERIC CHEMISTRY MODELS

TRANSPORT, CHEMISTRY AND RADIATION COMPONENTS IN COMPLEX 3D MODELS

UV fluxes for photodissociation rates
For all species involving OH in their chemistry need to include:

1. $\mathrm{O}_{3}, \mathrm{O}_{2}, \mathrm{O}\left({ }^{(} \mathrm{D}\right)$
2. $\mathrm{H}, \mathrm{OH}, \mathrm{HO}_{2}, \mathrm{H}_{2} \mathrm{O}_{2}$, with latter 3 in gas and aqueous phase
3. $\mathrm{NO}, \mathrm{NO}_{2}, \mathrm{NO}_{3}, \mathrm{~N}_{2} \mathrm{O}_{5}, \mathrm{HNO}_{3}$ with latter 2 in gas and aqueous phase
4. $\mathrm{CH}_{4}, \mathrm{CH}_{3}, \mathrm{CH}_{3} \mathrm{O}_{2}, \mathrm{CH}_{3} \mathrm{O}, \mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}, \mathrm{CHO}, \mathrm{CO}$ (also selected heavier hydrocarbons such as isoprene and terpenes in forested areas and anthropogenic hydrocarbons in urban areas)

Figure by MIT OpenCourseWare.

Horizontal exchange between columns

The spatial

 grid
We divide the earth's atmosphere into a finite number of boxes (grid cells).

Assume that each variable has the same value throughout the box.

Write a budget for each each box, defining the changes within the box, and the flows between the boxes.

(C) John Wiley \& Sons, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

INTERSPECIES (CO-PM) CORRELATIONS

MIT OpenCourseWare
http://ocw.mit.edu
12.335 / 12.835 Experimental Atmospheric Chemistry

Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

