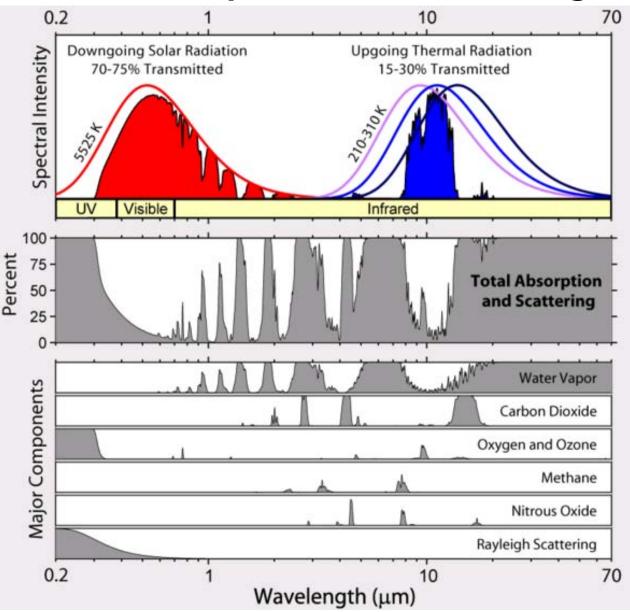
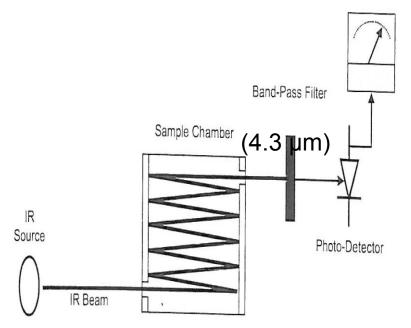
12.335/12.835 EXPERIMENTAL ATMOSPHERIC CHEMISTRY, FALL 2014

TOPIC 1 ATMOSPHERIC PHOTOCHEMISTRY and AIR POLLUTION

Field Project & Instrumentation: CO, O₃, NO, NO₂, CO₂, aerosols, UV


RONALD PRINN & MARIA ZAWADOWICZ SEPTEMBER 9, 2014

ATMOSPHERIC PHOTOCHEMISTRY and **AIR POLLUTION Field Campaign on Top of Bldg. 54** On the top of the building you will measure ultraviolet radiation $(UV), CO, O_3, NO, NO_2,$ CO_2 , wind speed (u), temperature (T) and aerosols (1, 2.5, and **10µm diameter filters**) (we will use aerosols as tracers of nearby combustion).


Image courtesy of Christine Daniloff/MIT. Used with permission.

Gas absorption and scattering

© Global Warming Art. Some rights reserved. License: CC BY-SA. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

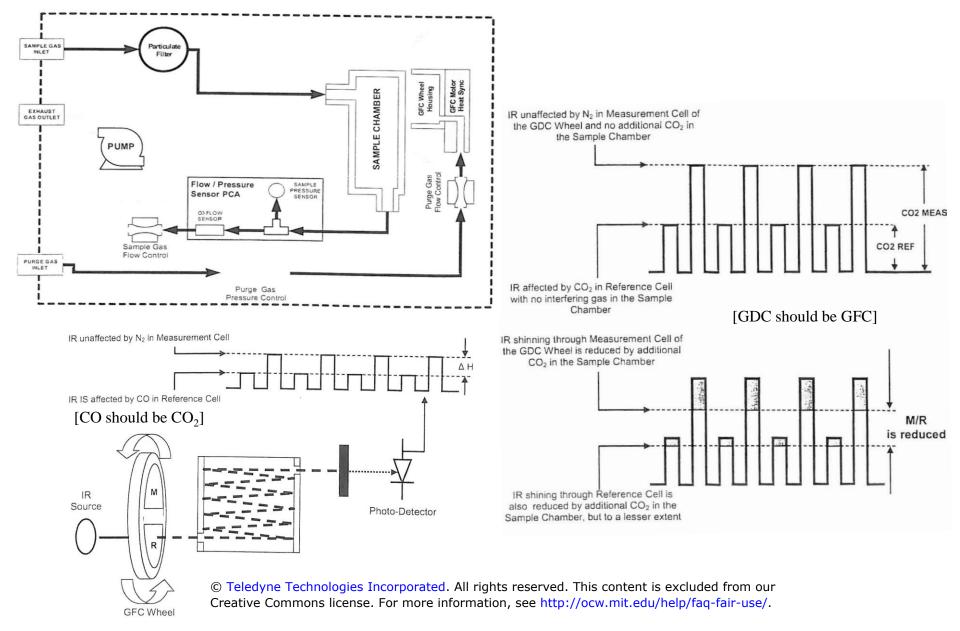
Measuring CO₂: *TELEDYNE Model 360E Gas Filter Correlation (GFC) Optical Analyzer*

IR SOURCE IS HOT FILAMENT

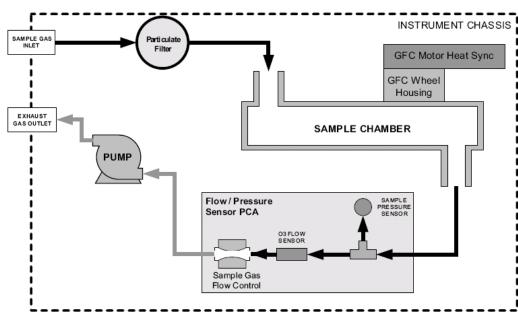
© Teledyne Technologies Incorporated. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

BEERS_LAW

 $I(x) = I(0) \exp(-\sigma[i]x)$


 $I = photon flux(photons / m^2)$

 σ = absorbtion cross sec tion at 4.3 μ m (m² / molecule)


x = photon pathlength from source (m) (total path = 2.5m)

 $[i] = gas \ concentration \ (molecule / m³)$

Measuring CO₂: Teledyne Model 360E Analyzer, contd.

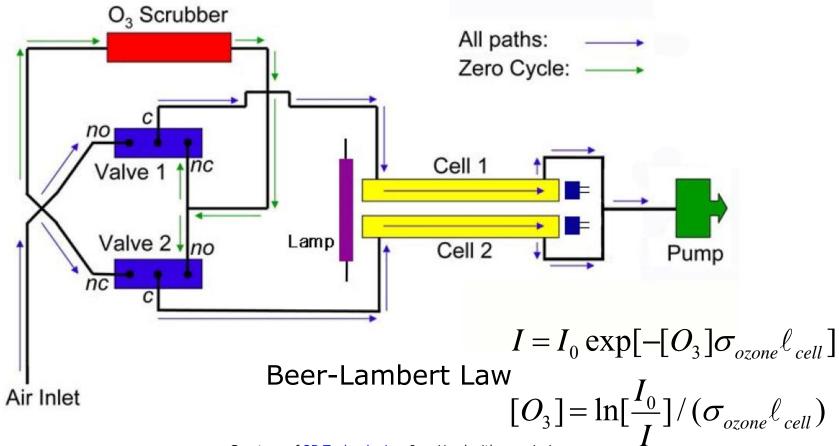
Measuring CO: Teledyne 300E Carbon Monoxide Analyzer (similar to the 360E CO₂ Analyzer)

© Teledyne Technologies Incorporated. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Calibration: Zero/Span

Beer-Lambert Law

$$I = I_0 \exp[-[CO]\sigma_{CO}\ell_{cell}]$$
$$[CO] = \ln[\frac{I_0}{I}] / (\sigma_{CO}\ell_{cell})$$

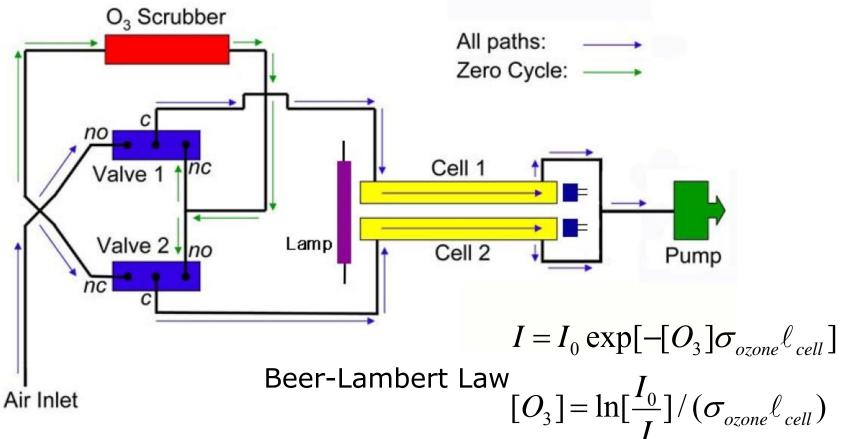

-Band pass filter at 4.7 μ m with 14 m pathway -GFC wheel with CO to cancel interfering gases (H₂O, CO₂, N₂O, CH₄) -Low CO cannot be accurately measured with high concentrations of interfering gases

Zero and Span gases should match chemical composition of sample

Span gas with concentration ~80% of full measurement range

Traceable to NIST standard

Measuring O₃: 2B Technologies Model 205 Dual Beam Ozone Monitor



Courtesy of 2B Technologies, Inc. Used with permission.

Ozone has an absorption maximum at 254 nm, coincident with the principal emission wavelength of a low-pressure mercury lamp

Only potential interferences from organic compounds in highly polluted air

Measuring O₃: Dual Beam Ozone Monitor, contd.

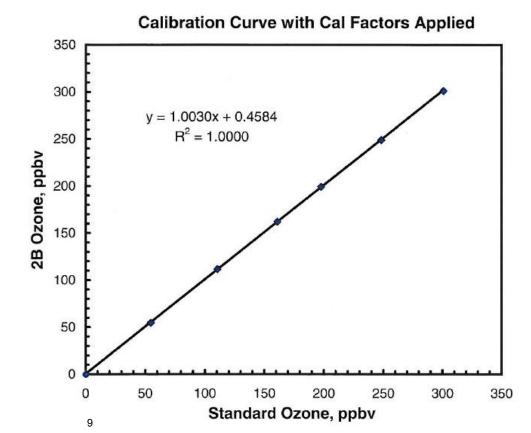
Courtesy of 2B Technologies, Inc. Used with permission.

Solenoid valves switch in unison to alternately send ozone-scrubbed air and unscrubbed air through the two absorption cells.

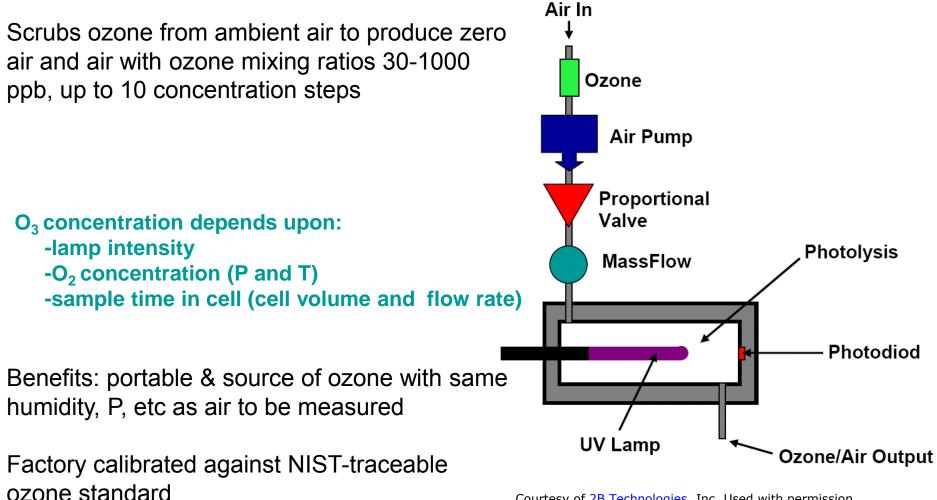
The intensity of light passing through ozonescrubbed air (I_o) is measured in Cell 1 while the intensity of light pass through unscrubbed air (I) is measured in Cell 2. Every 2 seconds, the solenoid valves switch, changing which cell receives ozone-scrubbed air and which cell receives unscrubbed air. The 2 values are averaged.

Measuring O₃: Ozone Calibration Source (2B Technologies Model 306)

In principle, the measurement of ozone by UV absorbance requires no external calibration; it is an absolute method.


However, non-linearity of the photodiode response and electronics can result in a small measurement error (Model 306 versus standard). Therefore, each instrument is compared with a NISTtraceable standard

Serial No. 491


2B, ppbv	Std, ppbv	2B, corr	Deviation	% Dev.
289.1	300.7	301.4	0.7	0.2
238.7	248.1	249.0	0.9	0.4
191.0	197.5	199.4	1.9	1.0
155.3	160.9	162.3	1.4	0.9
106.7	110.4	111.7	1.3	1.2
51.9	54.6	54.8	0.2	
-0.7	0.0	0.0		

08/24/07

Average Precision, ppbv:	0.8
Avg. Precision at 1 Atm .:	0.7
Calibration Parameters:	
Calibration Parameters: Z = 1	

Measuring O₃: Ozone Calibration Source, contd

Courtesy of 2B Technologies, Inc. Used with permission.

Measuring O₃: Ozone Calibration Source, contd.

Uses same chemistry that produces ozone in the stratosphere

$O_2 + hv \rightarrow O + O$ 2 [O + O₂ + M] \rightarrow 2 [O₃ + M]

$3 O_2 + hv \rightarrow 2 O_3$

Low pressure mercury lamp photolyzes oxygen at 185 nm (monitored by photodiode)

Measuring NO: Nitric Oxide Monitor (2B Technologies Model 400)

$NO + O_3 \rightarrow NO_2 + O_2 + chemi-luminescence^*$

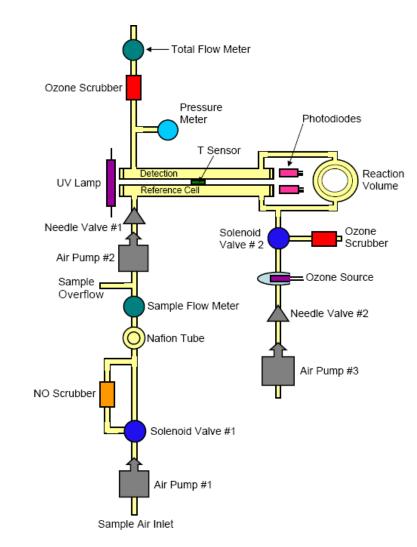
- Stoichiometric reaction

- Adequate concentration of O₃ added to the sample stream

- Decrease in the concentration of O_3 is measured by absolute UV absorption (as in the Ozone Monitor, 254nm)

$$\begin{split} \text{Beer-Lambert Law} \quad C_{O_3} = \frac{1}{\sigma l} \ln \left(\frac{I_o}{I} \right) \\ C_{NO} = C_{O_3, ref} - \frac{F_{total}}{F_{total} - F_{ozone}} \left(C_{O_3 - NO} \right)_{\text{det}} \quad \text{molecules/cm}^3 \end{split}$$

 $F_{total}/(F_{total} - F_{ozone})$ is dilution correction factor (*F* = flow rate)


*Alternative chemi-luminescence analyzer: Detects the small amount of light produced. Higher sensitivity & faster response time but requires more frequent calibration

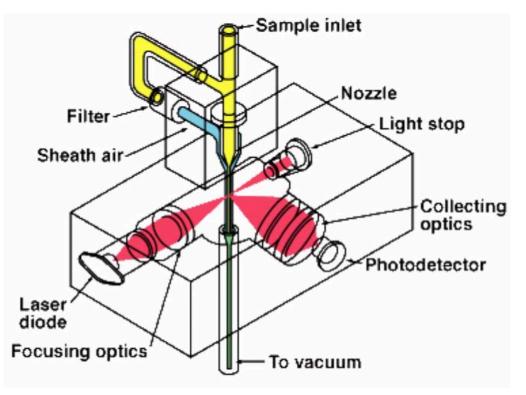
Measuring NO: Nitric Oxide Monitor, contd.

Reference cell to correct for ambient O_3 Adequate reaction time 3.5 - 4.5s

Light intensities measured for: Sample air and reference NO scrubbed sample air and reference

Ozone production by low pressure mercury lamp at 185nm to photolyze O₂ (same as Ozone Calibration Source) Corrections for incomplete reaction and dilution by added ozonized air

Courtesy of 2B Technologies, Inc. Used with permission.


Measuring [NO_x](= [NO] + [NO₂]) & [NO₂] (2B Technologies Model 401 "NO₂ Converter")

Air stream (containing both NO and NO_2) passes through a molybdenum catalytic converter which converts NO_2 into NO prior to the air entering the "NO Monitor".

Thus the "NO Monitor" gives a measurement of $[NO_x]$.

Then $[NO_2] = [NO_x] - [NO]$ where [NO] is value obtained by "NO Monitor" without using the Converter

Measuring Aerosols: DustTrak Model 8520-1

Optics kept clean by surrounding aerosol stream in a sheath of filtered air

© TSI Incorporated. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Continuous sample stream illuminated with laser light at 780 nm Smallest detectable particle 0.1µm Light scattering in all directions, focusing lens and photo-detector at 90 degrees Fixed sensing volume Can choose 1.0µm, 2.5µm, and 10µm inlet nozzles

Measuring Aerosols: DustTrak, contd.

Mie light scattering theory

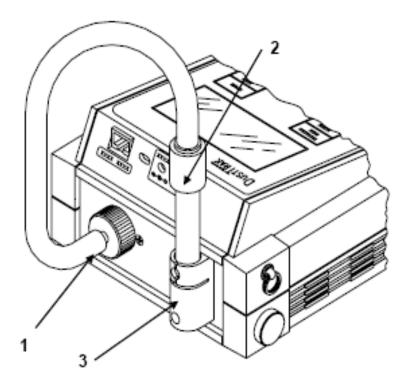
Scattered light by aerosols dependent upon:

Particle size parameter [ratio of circumference (π D) to laser wavelength (λ)]

Index of refraction of aerosol material

Aerosol light absorption properties ($\varpi = \sigma_{abs}/(\sigma_{abs} + \sigma_{scat})$)

Collected light ∞ Total scattered light ∞ Aerosol mass concentration


Calibration and Zeroing

Internal calibration constant relates this linear response. Determined from the ratio of voltage response to the known mass concentration of a test aerosol (ISO 12103-1, A1 Arizona Test Dust) that has a wide size distribution representative of a variety of ambient aerosols

Optional recalibration for each specific aerosol type

Zero calibration daily with zero inlet filter

Measuring Aerosols: DustTrak, contd.

© TSI Incorporated. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 4μm is internationally accepted as the 50 percent cut-off size for respirable aerosol diameter. Particles larger than 4 μm impact onto the surfaces of the upper respiratory tract and cannot reach the lungs.

10mm Nylon **Dorr-Oliver Cyclone (2)** included with the aerosol monitor can be used to discriminate between the respirable fraction and other portions of the ambient aerosol.

Particle-laden air sample swirls inside the **Cyclone** body. Larger (higher mass) particles cannot follow the air stream and become trapped, while smaller particles stay in the air stream and pass through. When using the **Cyclone**, you can assume that all particles smaller than the cut-off size pass through and all larger particles become trapped in the grit pot.

MIT OpenCourseWare http://ocw.mit.edu

12.335 / 12.835 Experimental Atmospheric Chemistry Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.