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VI. Erosional Channel Networks 

A. Plan-form Network Properties 

Dendritic channel network most common, scale-invariant. 

Other forms (trellis, radial patterns, etc.) ! lithologic and structural control. 
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Scaling Laws Drainage Networks 

Hack’s Law (1957):


Length of a channel is related to drainage area.


  l ! A
0.52"0.67

  l ! A
0.6

 
A = k

a
x

h x -    h  1.67= along stream distance 

Horton’s Laws: 

Numbers of channels, lengths, areas all grow in steady geometric progression. 

order of channel 

Second order channel 

 w =

! two or more first order channel join 

Third order channel ! two or more second order channel join 
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Stream numbers 
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B. Channel Longitudinal Profiles (Empirical): 

1960’s, 1970’s Statistical empirical studies ask what form of equation describes long 


profile?


Various researchers argue for: Power law
 z ! x
b , logarithmic, semi-log, exponential


forms best-fit channel profiles in their study.


Idea behind this work: downstream increase in 
 
Q

w
! greater transport


capacity/efficiency of erosion
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!gentler channel slope 

Problem: basin shape governs relation between 
 
Q

w
and  x . 

 
Q

w
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q
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c ,   0.7 ! c ! 1 ,


c < 1 due to: infiltration losses, non-uniform rainfall, flood plain storage


Combine with Hack’s law: 
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Thus otherwise identical but different shape basins could have very different river 

profiles. 

Flint (1974) removes problem of basin shape and resolves this debate (more or less) 

Flint’s law, power-law between S and A. 

= steepness index, θ = concavity index 

Derive estimates from regression of logS vs. logA plots: 
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Commonly observed: 

; but can vary downstream (spatial variation in geology, tectonics, 

dis-equilibrium conditions, etc). 

Problem:
 
k

s
, θ covary … small difference in θ causes huge change in apparent 
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s
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Need to normalize somehow for useful intercomparison. Two methods: 
; 

Discussed at length later and in lab. 
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C. Revisit the Channel Width Problem 

Recall empirical observation (robust, all data on both alluvial and bedrock channels): 
21

w
QW !

Lets consider where this comes from in terms of hydrology and Parker’s channel width 

closure. 

Combine conservation of mass of water and Drainage Basin Hydrology and solve 

for channel width as a function of drainage area and flow velocity and depth: 
; hWuQ
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; ; τ*c = 0.06 {for gravel} 

{for sand} 

(gravel) 

(sand) 

Write Parker’s Channel Width Closure in terms of dimensional shear stress: 
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Use Conservation of Momentum 
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Use first and second relations for boundary shear stress to substitute in for h and 

velocity, respectively, in the relation for W, then substitute in the channel closure 

condition for boundary shear stress: 
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So if c ~ 1 (typical) and θ ~ ½, then 2121

w
QAW !!

Empirical relations are internally consistent, which is a nice check, but this does 

mean that the channel width problem and river profile problem are tightly coupled 

– solving one requires solving both, ultimately. 

D. Transport-Limited Incising Channels (Alluvial but Erosional): 

Conservation of Mass (sediment) with Uplift: 
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Generalized Sediment Transport Rule 
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For gravel bedload, 

For sand otal load, 

Details of the formulation depend on the channel closure rule, sediment transport 

equation, treatment of downstream fining, etc {Derivations below} 
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Bedload transport = 1 

Rapid downstream fining: 

Steady-State Profile 

By definition for transport-limited channels: 

Q
c
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Steady-state sediment flux for uniform rock uplift is: 
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mf = 2, nf = 2!"  
1

2
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( qs !" b
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IF values given above will be inconsistent. 

Suspended sediment transport on hillslopes , no change in width) is 

consistent with shown by Willgoose, 1991

But the relevant question is whether sediment transport relations and channel 

closure rules for alluvial rivers (not hillslopes) are consistent with observed river 

profile concavities. To address this, we need to look at how the physics influences 

the exponents in the generalized transport relation, mf and nf. 

Gravel Transport (MPM) with Parker Channel Closure 
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Channel closure Parker, gravel

MPM Gravel Transport from Alluvial Profile Lectures

Substitute in relation for 

Thus we find: 
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; mf = c ~ 1 ; nf = 1 

Note: initiation of motion threshold has not been ignored, it has been subsumed 

into the channel closure rule. 
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-State Profile Concavity Index: 
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Sand Transport (Engelund and Hansen) with Parker Channel Closure 

( )
c

q
AkhWuQ ==

Conservation Mass Water

Conservation Momentum 
ghS

b
!" = ; 2

uC
fb

!" =

SA
W

Cgk
cfq

b

23

23
!

" =

as before combining these gives: 

Channel closure (Parker, sand) 

2
*
=!

( )gD
sb

!!" #= 2 (

( ) SA
W

Cgk
gD

cfq

sbbb

23

2325

2

!
!!""" #==

( )
SA

W

CDkg
cfqs

b

223

25
2 !!!

"
#

=

{for sand} 

sand) 

Combine above relations to give: 

Engelund and Hansen Sand Total Load Equation (from Alluvial Profile Lectures) 
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WqQ =
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Same prediction (and problem) for steady-state river profile concavity index. 

Sand Transport (Engelund and Hansen) with Channel Width ~ A 

( )
c

q
AkhWuQ ==

Conservation Mass Water

Conservation Momentum 
; 

as before combining these gives: 

ghS
b

!" =
2

uC
fb

!" =

SA
W

Cgk
cfq

b

23

23
!

" =

( )
( )

3535

35

35
25

352325

SA
W

Cgk
cfq

bb

!
"" ==

Engelund and Hansen Sand Total Load Equation (from Alluvial Profile Lectures) 
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Empirical channel closure (Hydraulic Geometry) 
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Combine above relations to give: 
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for c ~ 1 and b ~ ½ ; mf ~ 4/3 ; nf = 5/3 

Prediction for steady-state river profile concavity index: 
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" ; Perhaps reasonable for sandy, suspension-

dominated alluvial rivers. 

D. Transitions from Alluvial to Bedrock (Mixed) Channels 

Non-dimensional Bedrock Channel Number , N
br
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Under what conditions are channels detachment-limited (DL) vs. transport limited (TL)? 

Definition: DL: 
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Assume channel is DL, 

Mountain channels gravel bedload 

1. If K goes up (wetter/stormier; weaker rock) or K f goes down (coarse gravel) or 

!
g goes up (lots of gravel) !TL 

n < nf (n <1), U !

  
n = n
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(n =1),

  
N
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2. If and only if does goes up DL 

3. If 

4. If concavity of TL system is less than concavity of DL ! expect transition to TL 

downstream 
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(vice versa) 

DL: , concavity (derived in next lectures) 

TL: , - concavity 

Whipple and Tucker (2002) give predictions for the critical drainage area 

for this transition, and for a given drainage area, the critical rock uplift rate 

for the transition. 

5. If concavities are same Nbr ! f (A)

10 



12.163/12.463 Surface Processes and Landscape Evolution 
K. Whipple	 September, 2004 

Note: in this case, equations for steady-state channel slope above indicate that DL 

and TL channels can have identical longitudinal profiles. 

Next Lecture: Idealized Model for Bedrock, Detachment-limited Channel 
Transport capacity: 

Sediment Supply (Flux): 

very small 
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Erosion is governed by ability to “detach” or incision into bedrock. 
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Not limited by . 
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