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IV. Essentials of Sediment Transport 

A. Non-Dimensional Variables 

Motivational Example: Synthetic Sediment Transport Data (PowerPoint Slides) 

1. Reynold’s Numbers 
All Reynold’s numbers are of the form: 
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a. Channel Reynold’s number (turbulence).

A channel Reynold’s number marks the onset of turbulence
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Re > 500: turbulent open channel flow; Re > 2000: turbulent pipe flow 
Since Re is dimensionless, it applies equally to all flows; it is exactly 
equivalent to double velocity u , double depth h, double density ρ, or 
halve viscosity µ. 

Non-dimensional variables useful precisely because of this generality. 

b. Particle Reynold’s number (particle suspension, initiation of motion). 
The Particle Reynold’s number, Rp, uses settling velocity, ws, and particle 
diameter, D, as the velocity and length scales: 
Rp =

wsD

!

c. Shear Reynold’s number (initiation of motion). 
The Shear Reynold’s number, R*, uses shear velocity, u*, and particle 
diameter, D, as the velocity and length scales: 
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d. Explicit Particle Reynold’s number (initiation of motion, settling velocity). 
The Explicit Particle Reynold’s number, 
( )( )gDs !!! "

Rep, uses the expression 
, which has units of velocity, and particle diameter, D, 

as the velocity and length scales: 
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2. Froude Number 
The Froude Number is the ratio of inertial to gravitational forces: 

gh

u
Fr =

Note: gh is the celerity of waves 

Fr < 1: ghu <

Fr = 1: ghu =

Fr > 1: ghu >

; “sub-critical”, waves (and other information) can travel 
upstream (normal alluvial conditions, Fr < 0.5). 

; “critical”, standing waves 

; “super-critical”, waves (and other information) can not 
travel upstream. (Steep channels, bedrock channels) 

Sub-critical flow transitions to critical when “shooting” over a wier: 

The flow suddenly transitions back to sub-critical and thus must suddenly 
increase in depth – this is called a “hydraulic jump”. 
Discharge over a weir is easily determined by measuring flow depth and width of 
the weir, because velocity is known ( ) because Fr = 1 at the weir. ghu =

3. Rouse Number (mode of sediment transport) 
The Rouse number dictates the mode of sediment transport. It is the ratio of 
particle settling velocity to the shear velocity (rate of fall versus strength of 
turbulence acting to suspend particles): 
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4. Non-Dimensional Settling Velocity 
Several different non-dimensional groupings are used in describing the controls 
on settling velocity. The standard non-dimensional settling velocity uses the 
group ( )( )gDs !!! " to accomplish the non-dimensionalization: 

( )( )gD

w
w

s

s
s

!!! "
=

*

Dietrich et al (1983) is a key paper tabulating particle settling velocity 
dependencies on grain size and shape and uses a related variable W* as their non-
dimensional settling velocity: 

W
*
= ws*

2

Rp =
ws
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However, there is a complication since both W* and the drag coefficient CD 
depend on particle Reynold’s number, Rp. Therefore, some workers use the 
Explicit Particle Reynold’s number, which is related to the non-dimensional 
settling velocity, ws*, by the relation: 

Rp =
wsD

!
= ws*Rep

Excel spreadsheet for calculating settling velocity using equations in Dietrich et al 
(1983) is available on the class website. 

5. Shield’s Stress (sediment transport, initiation of motion). 
Initiation of motion and sediment transport must depend on, at least: boundary 
shear stress, sediment and fluid density (buoyancy), and grain-size. Early 1900’s 
Shields (German) did many experiments on sediment transport and determined a 
non-dimensional grouping that combines these factors and served to collapse a 
great range of experimental data to a single curve: 
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Where boundary shear stress can be approximated by the relation for steady-
uniform flow, Shields Stress, τ*, can be written as: 
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At the critical condition for initiation of motion, shear stress = τcr, the critical 
Shields stress is of course: 

!
*cr =

!cr

"s # "( )gD

Shields plotted against the Shear Reynold’s number, R*, in his original work. 
This nicely collapses the data, but is difficult to work with in practice, because 
both τ* and R* depend on u*, meaning iteration is required to find τcr from the 
plot (recall !"

b
u =
*

). Therefore, Shield’s diagram is usually recast in terms 
of the Explicit Particle Reynold’s number by plotting against: 
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6. Non-Dimensional Sediment Transport Rate 
Qs = total volumetric sediment transport rate through a given river cross section. 
Sediment flux per unit channel width is by definition: 

w

Q
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Einstein (the son) worked on the sediment transport problem and first defined the 
non-dimensional volumetic sediment flux as: 

qs* =
qs

!s " !( ) !( )gDD
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We will write all sediment transport relationships in terms of this (or very similar) 
non-dimensional group. 

7. Transport Stage 
Transport stage describes the intensity of sediment transport and is defined simply 
as the ratio of boundary shear stress to the critical boundary shear stress: 
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B. Sediment Transport Relations 

1. Bedload Transport: rolling, sliding, saltating 
Generally: 

( )( )!!!" /,,** #= seps Rfq

Theoretical relations have been developed, and volumetric flux solved by 
integrating individual grain motions – much is known about bedload sediment 
transport. In this class we will restrict ourselves to empirical relations determined 
in the lab and in the field. They must be applied only to conditions similar to 
those under which they were determined. 

a. Meyer-Peter Mueller (1948) (generalized) 

( ) 23
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Where for gravels, τcr* is a constant: Shields (gravel) ~ 0.06; Parker ~ 0.03 
(mixed size gravel); Meyer-Peter Mueller = 0.047 (well sorted fine gravel, at 
moderate transport stage, Ts ~ 8). 

b. Fernandez-Luque and van Beck (1976) 
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conditions similar to M-P-M, only at low transport stage (Ts ~ 2). 

c. Wilson (1966) 

( ) 23
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conditions similar to M-P-M, only at high transport stage (Ts ~ 100). 

Summary:

Wiberg and Smith (1989) point out that the observed variation in the transport

coefficient is well captured by a simple dependence on shield’s stress (t*), giving

a generalized bedload transport relation:
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s
(R2 for power-law fit: .989) 

5




12.163/12.463 Surface Processes and Landscape Evolution 
K. Whipple September, 2004 

d. Bagnold (1977, 1980) 

Many versions of the Bagnold relation (empirical fit to lab and field data) exist. 
A recent adaptation by Bridge and Dominic (1984) is: 

qs* = at ! * " !cr*( ) !
*
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Where at is a dimensionless constant. Note that Bagnold’s relation is also often 
written in terms of “unit stream power” (stream power dissipated per unit bed 
area) ! w =" = #gQS w = $ bu . 

e. Parker (1982) Sub-surface Transport Model 

Parker (1990, 1992) later revised this empirical relation based on sub-surface D50 
(field data) to a surfaced-based model. The difference is whether you need data 
on the surface D50 or sub-surface D50. For convenience, Parker defined a new, 
slightly different non-dimensional volume flux of sediment transport to replace 
the classic qs*: 

He also writes the non-dimensional shear stress in terms of the D50 of the 
subpavement (D50sp) and as a ratio of shear stress to the critical shear stress: 
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Where 0.0876 is the critical shields stress for D50sp, such that φ50cr = 1. Given that 
D50p/D50sp ~ 2.5, this result implies τ*pcr = 0.035 (ie. lower than the “standard” 
shields curve result of τ*pcr = 0.06 for uniform-sized gravel). 

With these definitions, Parker (1982) fit the following relations to the field data: 
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2. Suspended Sediment Transport 
Suspended sediment transport depends on the product of sediment concentration 
profiles (for each size class) and the velocity profile, which are of course closely 
related. Dietrich (1982) presents a graphical tabulation of all sediment settling 
velocity data as a function of grain size and shape in terms of the non-dimensional 

reynold’s number (	 ) defined earlier. These 

settling velocity W* and non-dimensional grain-size D* or the explicit particle 
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data are critical to computation of sediment concentration profiles. For m size 
classes, a general expression for suspended sediment flux can be written: 

qs = C
i
z( )
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Further elaboration of this approach must be saved for a course on sediment 
transport theory. We will take a simpler approach and review empirical relations 
for total load in sandy systems (dominated by suspended load). 

a.	 Engelund and Hansen (1967): Total load for sand (bedload plus suspended 
load). 

qs* =
0.05

Cf

!
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2.5

Note that for sand, τ* >> τ*cr is often assumed. Cf is importantly 
influenced by ripples and dunes and must be accounted for in application 
of the Engelund and Hansen relation. 

b.	 Van Rijn (1984 a,b). 

From an extensive empirical analysis of field data, Van Rijn developed a 
complex empirical relation for total load in sandy systems that in practice 
is similar to Engelund and Hansen’s simple relation, but is more general. 
His relations must be implemented in a spreadsheet and one can be made 
available to you. Also, it is worth noting that Van Rijn’s relations can be 
closely matched with a form similar to the Meyer-Peter Mueller bedload 
relation, where the excess shear stress is raised to a power in the range 1.8 
– 2.5, depending on conditions. 

Powerpoint graph comparing bedload and suspended load flux. 
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GRAIN SIZE SCALES FOR SEDIMENTS 

The grade scale most commonly used for sediments is the Wentworth scale (actually first proposed by 
Udden), which is a logarithmic scale in that each grade limit is twice as large as the next smaller grade 

limit. For more detailed work, sieves have been constructed at intervals 2 2  and 4 2 . The φ  (phi) scale, 
devised by Krumbein, is a much more convenient way of presenting data than if the values are expressed in 
millimeters, and is used almost entirely in recent work. 

U.S. Standard 
Sieve Mesh # 

 Millimeters Microns φ Wentworth Size Class 

4096 -12 
1024 -10 Boulder (-8 to -12φ ) 

Use 256 -8 
wire  64 -6 Cobble (-6 to -8φ ) 
squares  16 -4 Pebble (-2 to -6φ ) 
5 4 -2 
6 3.36 -1.75 
7 2.83 -1.5 Granule 
8 2.38 -1.25 
10 2.00 -1.0 
12 1.68 -0.75 
14 1.41 -0.5 Very coarse sand 
16 1.19 -0.25 
18 1.00 0.0 
20 0.84 0.25 
25 0.71 0.5 Coarse sand 
30 0.59 0.75 
35 1⁄2 0.50 500 1.0 
40 0.42 420 1.25 
45 0.35 350 1.5 Medium sand 
50 0.30 300 1.75 
60 1⁄4 0.25 250 2.0 
70 0.210 210 2.25 
80 0.177 177 2.50 Fine sand 
100  0.149 149 2.75 
120 1/8 0.125 125 3.0 
140  0.105 105 3.25 
170 0.088 88 3.5 Very fine sand 
200  0.074 74 3.75 
230 1/16 0.0625 62.5 4.0 
270  0.053 53 4.25 
325 0.044 44 4.5 Coarse silt 

0.037 37 4.75 
 1/32 0.031 31 5.0 
Analyzed 1/64 0.0156 15.6 6.0 Medium silt 

1/128 0.0078 7.8 7.0 Fine silt 
by 1/256 0.0039 3.9 8.0 Very fine silt 

0.0020 2.0 9.0 
Pipette 0.00098 0.98 10.0   clay 

0.00049 0.49 11.0  
or 0.00024 0.24 12.0  

0.00012 0.12 13.0  
Hydrometer 0.00006 0.06 14.0  
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Courtesy of MIT OCW. Used with permission. 
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