Specimen characterization with the **Electron Microprobe**

© Massachusetts Institute of Technology

Signals produced in the Electron Microprobe

Specimen

Electron-specimen interactions

Beam electron _____ Specimen atom _____ Scattered beam electron

Elastic Scattering $E_1 = E_0$, large ϕ_e

- Back-scattered

electron

Inelastic Scattering $E_1 < E_0$, small ϕ_i

- Characteristic X-rays

- Secondary electron
- Cathodoluminescence

Elastic scattering cross-section

 $Q(>\phi_e) = 1.62 \times 10^{-20} (Z^2/E^2) \cot^2(\phi_e/2)$

Q: cross section (events.cm²/e⁻.atom) ϕ_e : elastic scattering angle Z: <u>atomic number</u>

E: beam energy

Electron interaction volume

- Increases with voltage (electron beam energy)
- Decreases with sample atomic number

 Typical depths (15 kV, perpendicular beam):

 Carbon (C, At# 6)
 1.8 μm

 Iron (Fe, At# 26)
 1.1 μm

 Uranium (U, At#92)
 0.8 μm

Electron Back-scattering (High angle elastic scattering)

Backscattered electron image

Back-scattered electron

Polished surface

Plane polarized transmitted light

Thin section

Function of composition

Function of optical properties

Phase identification: EDS X-ray spectra

Understanding X-rays: Energy and Wavelength

E=hv

h: Planck's constant

 (6.626x10⁻³⁴ Joule.sec
 or, 6.626x10⁻³⁴/1.6021x10⁻¹⁶ keV.sec)

 v: frequency (= c/λ)

 (c: speed of light in vacuum)
 = 2.99793x10¹⁷ nm/sec
 λ: wavelength)

 λ (nm) = c/v = hc/E = 1.2398/E (keV)

Understanding X-rays: The electromagnetic spectrum

 $\lambda (\mathrm{nm}) = 1.2398 / E (\mathrm{keV})$

The X-ray spectrum

Continuum X-rays: background in X-ray spectra

Neither phase contains Cr

But background counts at Cr : —

 $\operatorname{in} 1 \operatorname{in} 2$

Characteristic X-ray generation

Inner-shell ionization

X-ray and electron transitionKα: L to K-shellKβ: M to K-shellLα: M to L-shellLβ: N to L-shellMα: N to M-shell

Overvoltage $U = E_0 / E_c$

where, E_0 is the electron beam energy (usually 10-25 keV) E_c : critical excitation energy for inner shell ionization

															Eler X-ra	nents cur iy Microar	rently not nalysis	detected	using				
										NAME OF TAXABLE PARTY.						K alpha energy between 0-10 keV							
					238.			26.98 Si					L alpha energy between 0-10 kev										
					U											L alpha energy between 10-20 Kev							
					ke	V	00			SEV					Ма	lpha ener	gy betwee	en 0-10 ke	v				
^{1.008} H			K	α	98.4	34	92			1.740	(Rb.S	r.TA.M								4.003	He		
1			Τ	α	13.6	12						4									2		
6.941 Li	9.012 Be				10.0							1		10,81	В	12.011 C	14.01 N	16.00 O	19.00 F	20.18	Ne		
3	0.108 4		N	Ία	3.17	1								0.185	5	^{0.282} 6	0.392 (Ti) 7	0.523 (V, Cr) 8	0.677 (Fe) 9	0.848	10		
22.99 Na	^{24.31} Mg					-	_					_		28.09	AI	Si	^{30.97} P	32.06 S	^{34,45} Cl	39.95	Ar		
1.04 (Zn) 11	1.254 12													1.487	13	1.740 (80.5r.TA.W	2.013 (Zr) 15	2.307 (Mo, Pb) 16	^{2.622} 17	2.957	18		
39.10	40.08	44.96	00	47.90 TI	50.94 1/	52.00	54.94	Man 55.85	Fo	58.93 Co	58.70	i 63.55 C.	65.38 7	NI 69.72	Ga	72.59 Go	74.92 A.e.	78.96 So	79.90 Br	\$3.80	Kr		
3,313 (Cd, In)	3.691 Ga	4.090	SC	4.510 (Ba)	4.952 (Ti, Cr)	5.414 (V)	5.898 (Cr)	6.403 (N	re (n)	6.929	7.477	8.047	8,637	9.250	Ga	9.885	A5	11.220	11.922	12.649	TA I		
- 19	0.341 20	0.395	21	0.452 (N) 22	0.511(0) 23	0.573 (0) Z4	0.637	25 0.705 (F	26		0.851 Z	23			31	1.100 JZ	1.202 33				30		
^{85,47} Rb 13,393 37	^{87.62} St 14.163 38	14,955	Y 39	^{91.22} Zr 14.776 40	^{92.91} Nb 16.617 41	^{95,94} Mo 17,481 42	98 18.368	Tc ^{101.07} 43 _{19.282}	Ru 44	^{102.91} Rh 20.217 45	^{106.40} P 21.180 4	1 107.87 A	112.41 C	d 114.82 18 24.209	In 49	^{118.69} Sn 25.272 50	^{121.75} Sb 26.359 51	^{127,60} Te 27,471 52	28.615 53	29.779	Xe 54		
1.694 (SI, Ta, W)	1.806 (Si, Ta, W	1.922	1100	2.042 (P) 	2.166	2.293 (S, Pb) 	2.424	2.558		2.696	2.838	2.984	3.133 (K)	3.286		3.443	3.604	3.769	3.937	4.109	1		
^{132.91} Cs	^{137.33} Ba			^{178,49} Hf	^{180.95} Ta	^{183,85} W	186.21	Re ^{190.20}	Os 76	^{192.22} lr 77	^{195.09} Pt	196.97 A	u ^{200,59} H	g ^{204.37}	Ti 81	^{207.2} Pb	^{208.98} Bi	²⁰⁹ Po	²¹⁰ At	222	Rn 86		
30.971 JJ 4.286	32.196 JC 4.465 (Ti)	L		7.898	8.145 1.710 (Si, Rb)	8.396 1.775 (Si, Sr)	.651 843	8.910	10	9.175	9,441 2.050	9.712 2.122	9,987 2,195	10.267	01	10.550 2.346 (S, Mo)	10.837 2.423	11.129 2.501	11.425 2.581	11.725			
²²³ Fr	^{226.03} Ra										Sin San												
86,098 87 12,029	88.495 88 12.338	A																					
2.744	2.971																						
		-	-	^{139,91} La	^{140.12} Ce	140.91 Pr	14.24	Nd 145	Pm 1	150.40 Sm	^{151.96} E	1 157.25 G	id ^{158.93} TI	162.50	Dy	^{164,93} Ho	^{167.26} Er	^{168,93} Tm	173.04 Yb	174,97	Lu		
		L		33.441 57 4.650	34.717 58 4.839	36.031 59 5.033	37.3 8 5.22	60 38.725 5.432	61 4	40.118 62	41.534 6 5.845	42.992 (6.056	64 44.476 65 6.272	45.997 6.494	66	47.534 67 6.719	49,100 68 6.947	50.730 69 7.179	52.362 70 7.414	54.078 7.654	71		
		-	_	0.833	0.882	0.929	0.97	1.032	1	1.085	1.137	1.190	1.245	1.299		1.353	1.409	1.466	1.523	1.581			

L	133.441 57 4.650 0.833	34,717 58 4,839 0,882	36.031 59 5.033 0.929	37.3 s 60 5.22 0.97	38,725 61 5,432 1,032	40,118 62 5.835 1.085	41.534 63 5.845 1.137	42,992 64 6.056 1.190	44.476 65 6.272 1.245	45.997 66 6.494 1.299	HO 47.534 67 6.719 1.353	49.100 68 6.947 1.409	50.730 69 7.179 1.466	10 52.362 7.414 1.523	54.078 71 7.854 1.581
A	227.83 Ac 88.495 89 12.650 2.911	232.04 Th 93,382 90 12.967 2.996	^{231.04} Pa 95.886 91 13.288 3.083	238.0 U 98.434 92 13.612 3.171	^{237.05} Np 100.800 93 13.941 3.260	244 Pu 103.320 94 14.275 3.348	243 Am 105.970 95 14.615 3.437	²⁴⁷ Cm 96 ^{14.961} 	²⁴⁷ Bk 97 15.309 	²⁵¹ Cf 98 ^{15.661}	²⁵² Es 99 16.018 	Fm 100	Md 101	No 102	Lr 103

Imaging with X-rays: compositional mapping

Beam-rastered image: electron beam rasters over the area to be imaged Stage-rastered image: electron beam is stationary, stage moves

EPMA: Quantitative analysis

 C_i and $C_{(i)}$: concentration of element 'i' in sample and standard I_i and $I_{(i)}$: measured X-ray intensities of element 'i' in sample and standard k_i : k-ratio of element 'i' ZAF : matrix corrections

Matrix (ZAF) corrections

Z : atomic number correction A : absorption correction F : fluorescence correction

Atomic number (Z) correction

 $R_{i} = \Sigma C_{j}R_{ij}$ R = #X-rays generated / #X-rays ifthere were no electron backscattering

 $S_{i} = \Sigma C_{j} S_{ij}$ $S = -(1/\rho)(dE/ds), stopping power$

(): standard

a function of E₀ and composition (Duncumb and Reed)

Z, a function of E_0 and composition

X-ray absorption

 $I = I_0 \exp^{-(\mu/\rho)(\rho x)} = I_0 \exp^{-(\mu/\rho)(\rho z \cos ec\psi)}$

I: Intensity emitted; I_0 : Intensity generated μ/ρ : mass absorption coefficient ρ : density; z: depth; ψ : take-off angle

Mass absorption coefficient, $(\mu/\rho)^{energy}_{absorber}$

ZnKα is highly absorbed in Ni

Absorption (A) correction

Absorption function, $f(\chi_i) = I_{i(emitted)} / I_{i(generated)}$

(): standard

a function of E_0 , ψ and composition (Philibert)

A, a function of E_0 , ψ and composition

A_{NiKα} in Fe-Ni alloy

A consequence of X-ray absorption when $|E_{absorbed X-ray} > E_{c(absorber shell)}$

Absorption-Fluorescence in Fe-Ni alloy

NiK α is absorbed in Fe, and Fe is fluoresced

K-shell excitation energy of Fe = 7.111 keV; NiK α energy = 7.478 keV $\left(\frac{\mu}{\rho}\right)_{\text{Fe}}^{\text{NiK}\alpha} = 379.6 \text{ cm}^2/\text{g}$

Characteristic fluorescence (F) correction

 $\mathbf{F}_{i} = \frac{\left(1 + \sum I_{(ij)}^{f} / I_{(i)}\right)}{\left(1 + \sum I_{ij}^{f} / I_{i}\right)}$

 $I^{f}: fluoresced intensity$

I : e-beam generated intensity

(): standard

Fluorescence correction for an element includes the summation of fluoresced intensities by other elements in the compound

a function of E_0 and composition (Castaing-Reed)

F, a function of E_0 and composition $F_{FeK\alpha}$ in Fe-Ni alloy

 $A_{NiK\alpha}$ in Fe-Ni alloy

12.119 Analytical Techniques for Studying Environmental and Geologic Samples Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.