Problem Set \#2: Structure of Earth Materials Problem Set

Due 16 November 2004. Do the odd-numbered problems. The even-numbered problems are study questions.

1. Show that any $2^{\text {nd }}$-rank tensor is centro-symmetric
2. Show, that in general, for a rotational transformation, $a_{i k} a_{j k}=1$ if $\mathrm{i}=\mathrm{j}$. and that $\mathrm{a}_{\mathrm{ik}} \mathrm{a}_{\mathrm{jk}}=0$ if $\mathrm{i} \neq \mathrm{j}$. Hint: Write the new axes, x_{1} and x_{j}, in terms of the old, and take the dot product.
3. Write the three transformation matrices for a rotation of angle θ around $\mathrm{x} 1, \mathrm{x} 2$, and x 3 .. Note: these are three separate transformations.
4. Show that the magnitude of a second-rank tensor property has a two-fold axis of symmetry around the 3 axis (where the principal directions are $\mathbf{e}_{\mathbf{1}} \mathbf{e}_{2}$ and \mathbf{e}_{3}). Hint: Show that

$$
S\left(p^{\prime}\right)=S(p) \text { where } p=\left[\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right] \text {, and } p^{\prime}=\left[\begin{array}{c}
-I_{1} \\
-I_{2} \\
I_{3}
\end{array}\right]
$$

5. Exercise 1.3 Nye. Page 31-32.
[1] The electrical conductivity tensor of a certain crystal has the following components referred to axes $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$.

$$
\sigma_{i j}=\left[\begin{array}{ccc}
25 \cdot 10^{7} & 0 & 0 \\
0 & 7 \cdot 10^{7} & -3 \sqrt{3} \cdot 10^{7} \\
0 & -3 \sqrt{3} \cdot 10^{7} & 13 \cdot 10^{7}
\end{array}\right]
$$

in m.k.s. units (ohm--1m-1). The axes are now transformed to a new set $\mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}^{\prime}, \mathrm{x}^{\prime}{ }_{3}$. given by the following angles:

$$
\angle x_{1}^{\prime} O x_{1}=0^{\circ}, \angle x_{2}^{\prime} O x_{2}=30^{\circ}, \quad \angle x_{2}^{\prime} O x_{3}=60^{\circ}, \quad \angle x_{3}^{\prime} O x_{3}=30^{\circ}
$$

Draw up a table for the transformation $\left[a_{\mathrm{ij}}\right]$, and check that the sum of the squares of the transformation in each row and column is 1 .
[2] Determine the values of the components, σ_{ij} and comment on the result obtained.
[3] Draw on the new axes $x^{\prime}{ }_{2}, x^{\prime}{ }_{3}$ a section of the conductivity ellipsoid (representation quadric) in the plane $\mathrm{x}^{\prime}{ }_{1}=0$, and notice that this is a principal section. Insert the old axes $\mathrm{x}_{2}{ }_{2} \mathrm{X}^{\prime}{ }_{3}$, on the drawing.
[4] Draw a radius vector OP in the direction whose cosines referred to the old axes are $(0,1 / 2 .(\sqrt{3}) / 2)$. Measure the length of this radius vector and so find the electrical conductivity in this direction.
[5] Check the last result by using an analytical expression.
[6] Assume an electric field of $1 \mathrm{volt} / \mathrm{m}$ to be established in the direction OP. Calculate the components E_{i} along the x_{1} axis, and hence calculate the components of current density j_{i}.
[7\} Insert these components to scale on a vector diagram on the axes, $x_{1} x_{2}, x_{3}$, and hence, determine graphically the magnitude and direction of the resultant current density.
[8] Assuming the same electric field as in [6], repeat the calculation [6] and the construction [7] using the $\mathrm{x}_{\mathrm{i}}^{\prime}$ axes instead of the old axes, and use the values of the σ_{ij} found in [2]. Compare the result with that of [7].
[9] Compare the direction of the resultant current with that of the normal to the conductivity ellipsoid at the point P .
[10] Find graphically the component along OP of the resultant current density and hence find σ in this direction. Compare the value with those found in [4] and [5].
6. Suppose the conductivity tensor is
$\sigma=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \cdot 10^{7}(o h m \bullet m)^{-1}$.
If the crystal axes are aligned with the coordinate axes for this representation, in which crystal class is this mineral? Calculate the current flux for $E=[7.5,4.5,0]$.

