

Sensors

- Sensing vs. Sampling
 - Some samples are altered by changes in temperature and pressure
 - More efficient for exploration and mapping
- What is a sensor?
 - A device that converts a physical property or a change in a physical property into a more easily manipulated form (e.g., voltage, displacement, resistance)

Key Definitions

- Accuracy
 - difference between a measured value and the true value
- Precision
 - difference between individual measurements of the same quantity
- Error
 - Systematic
 - results from a basic fault in the measurement (affects accuracy)
 - Random
 - results from basic limitations in the method (affects precision)
- Resolution
 - The smallest increment that can be measured

Key Issues

- Response time
- Calibration
- Drift
- Bio-fouling

- Small form factor
- Low power
- Low cost
- Ease of use

Properties of the ocean we want to measure

image credit: WHOI

Properties of the ocean we want to measure

- Temperature
 - measured in $^\circ\,$ C
- Salinity
 - total concentration of dissolved salts
 - measured in PSU (practical salinity units)
- Density
 - $\rho = \rho(\mathsf{T},\mathsf{S},\mathsf{p})$
 - measured in kg/m³
- Depth
 - measured in m

- Currents
 - direction the current is moving from $0-360^{\circ}$
 - speed measured in m/s
- Chemical constituents
 - dissolved gases
 - nutrients
 - measured in ppm, ppt, mg/l, moles/kg
- Biological organisms
 - biomass
 - numbers of organisms
 - Types of organisms

Measuring Temperature

- Mercury thermometer
 - bucket measurements
 - reversing thermometers

- Platinum resistance thermometers
- Thermistor
- Thermocouple

• Bathythermograph (BT)

Expendable BT (XBT)

Measuring Salinity

- About 85% of total dissolved solids are NaCl
- Electrical conductivity
 - Inductive cell
 - Electrode cell

- Silver nitrate (AgNO₃) titration
 - ship- or shore-based
 - S = 0.03+1.804*chlorinity

Image removed due to copyright considerations. Please see: http://www.seabird.com/

 $Ag^{+}(aq) + CI^{-}(aq) \otimes AgCI(s)$ (white)

 $2Ag^{+}(aq) + CrO_4^{2-} \otimes Ag2CrO4$ (s) - is temperature dependent

 $S = 3.55 + 10.2 \cdot C - 0.73 \cdot T$

(red-brown)

Measuring Pressure/Depth

• Hydrostatic pressure

$$P = \rho g dz$$
$$P = \int_{o}^{h} \rho(z) g dz$$

-10 m of water = 1 atm

- Absolute pressure
- Gauge pressure
 - referenced to atmospheric pressure

- Strain gauge
 - measuring the electrical resistance of a metal
- Vibratron
 - measuring the natural frequency of a vibrating tungsten wire
- Quartz crystal
 - measuring the natural frequency of a quartz crystal

CTD – Conductivity/Temperature/Depth

- Primary tool for determining the physical properties of seawater
- Water samples can collected at different depths with a rosette of Niskin bottles

Image removed due to copyright considerations. Please see: http://www.seabird.com/

image credit: WHOI

Current Velocity

Image removed due to copyright considerations.

Franklin-Folger map of the Gulf Stream

Current Velocity – Eulerian

• Measurements made at a fixed point

- Rotors/vanes
- ADCP
 - Acoustic Doppler Current Profiler

Images removed due to copyright considerations. Please see:

Pickard, George L., and W. J. Emery, eds. *Descriptive Physical Oceanography: An Introduction*. Woburn, MA: Butterworth-Heinemann, 1990. ISBN: 075062759X.

Current Velocity - ADCP

- Acoustic Doppler Current Profiler
 - Measures a current profile up to 1000 m long
 - Sends out "pings" at a certain velocity
 - Measures time of return and change in frequency

Current Velocity – Lagrangian

- "Where does the water go?"
- Follow the water parcel
 - Measure current and other water properties

- Surface Drifters
- Floats
 - PALACE
 - SOFAR
 - RAFOS

image credit: WHOI

Chemical Sensors

- Salinity
 - Electrode cell
- Dissolved gases
 - Electrochemical reactions
 - Fluorescence quenching
 - Gas tension device
 - Gas permeable membrane
 - Measure pressure in cell

Dalton's Law $P_T = \Sigma p_i$ Henry's Law $c_i = s_i \cdot p_i$

- Slow response time
- Subject to bio-fouling

- Concentrations are often calculated from other measurements
- Carbon in the ocean
 - Particulate organic carbon
 - Particulate inorganic carbon
 - Dissolved organic carbon
 - Dissolved inorganic carbon
 - CO₂ in the ocean

 $\begin{array}{c} \mathsf{CO}_2(\mathsf{aq}) + \mathsf{H}_2\mathsf{O} \boxtimes \mathsf{H}_2\mathsf{CO}_3\\ \mathsf{H}^2\mathsf{CO}^3 \boxtimes \mathsf{H}^+ + \mathsf{HCO}_3^-\\ \mathsf{HCO}_3^- \boxtimes \mathsf{H}^+ + \mathsf{CO}_3^{2-} \end{array}$

Chemical Sensors

- Sensors now exist for
 - Nitrate
 - Nitrite
 - Total nitrogen
 - Total phosporous
 - Phosphate
 - Ammonia
 - Fe^{II}/Fe^{III}

- Most current *in situ* chemical sensors measure the dissolved state
- Gases and solids are also a part of the chemistry of the ocean
- New types of *in situ* spectroscopic instrumentation are now being developed

Biological Sensors

- Secchi disk
 - Measures attenuation and thus material in the water

Image removed due to copyright considerations. Please see: http://home.hiroshima-u.ac.jp

- Optical Backscatter Sensor (OBS)
 - Measures concentration of particles
- Laser In Situ Scattering and Transmissometry (LISST)
 - Determines size distribution of particles

- Fluorometer
 - Fluorescence can be used to determine amount of chlorophyll or distinguish chlorophyll from other material
- Flow Cytometer
 - Uses fluorescence to look at one cell at a time

Biological Sensors – Imaging Sensors

- Video Plankton Recorder (VPR)
 - Underwater video microscope
- FlowCytobot
 - Measures light scattering and fluorescence
- Environmental Sampling Processor (ESP)
 - Uses DNA probes and fluorescent tags

