Design for the Ocean Environment

Massachusetts Institute of Technology 12.097

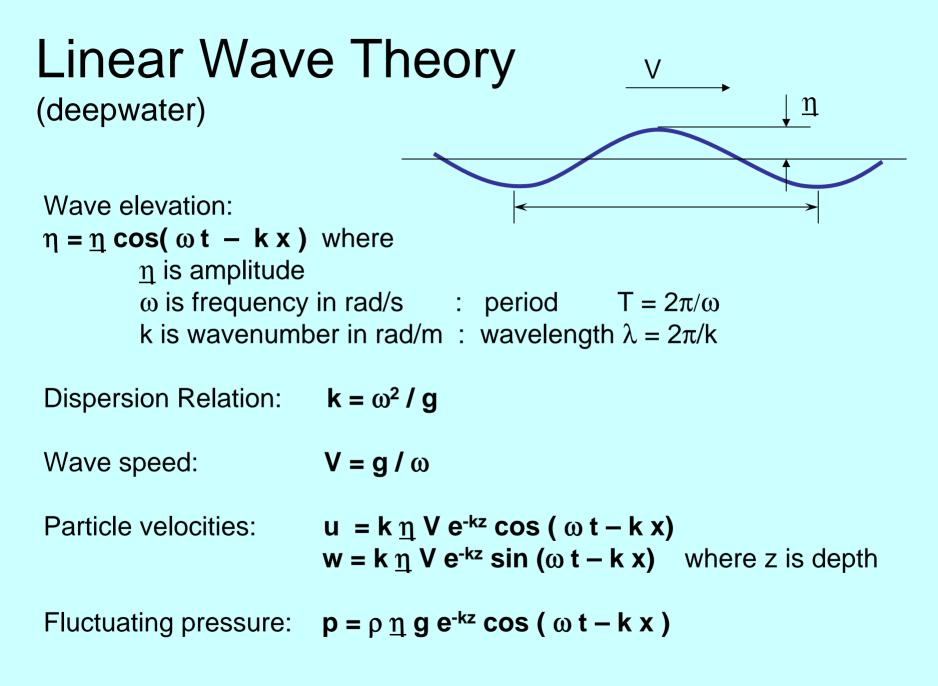
Some Major Considerations

- Hydrostatic pressure
- Heat dissipation in housings
- Waves
- Forces on bodies in steady flow
- But don't forget:

wind and rain, corrosion, biofouling, material fatigue, creep, chemical breakdown, human safety, regulations, etc.

	Young's Modulus, Pascals	Ultimate Strength, Pascals	Coefficient of thermal conductivity W m / m ² °K	, Density,
Steel	200e9	550e6	4400	8000
Aluminum	70e9	480e6	22000	2700
Titanium	100e9	1400e6	1500	4900
Glass	70e9	<35000e6 (compression!)	100	2600
ABS Plastic	1.3e9	34e6	LOW	~1100
Mineral oil		-	17	~900
Water	2.3e9	-	60	1000

Wave Fields

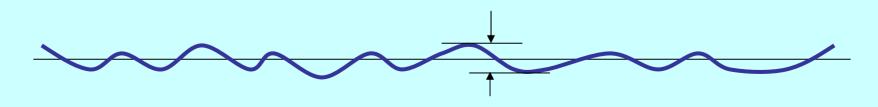

Definition:

SeaState	Height (ft)	Period (s)	Wind (kr	nots)
2	1	7	9	
3	3	8	14	Wave height $H_{1/3}$
4	6	9	19	Significant wave:
5	11	10	24	
6	16	12	37	Average of one-third
7	25	15	51	highest waves

Distribution:

30% of world oceans are at 0-1m height

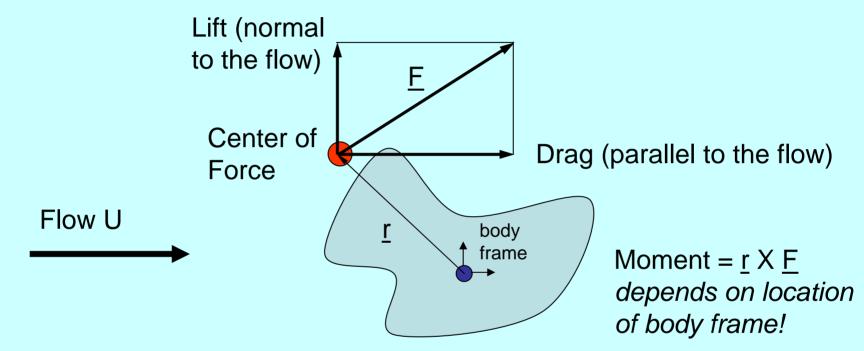
41%	1-2m	
17%	2-3m	Wave fields depend on
6%	3-4m	
2%	4-5m	storms, fetch, topography


Statistics of Extreme Waves

- Average of one-third highest waves is significant wave height H_{sig} or $H_{1/3} = 2 \underline{\eta}_{1/3}$
- An observer will usually report H_{1/3}

•
$$H_{1/10} = 1.27 * H_{sig}$$

 Expected maxima: N = 100; $1.62 * H_{1/3}$


N = 1000 ;
$$1.92 * H_{1/3}$$

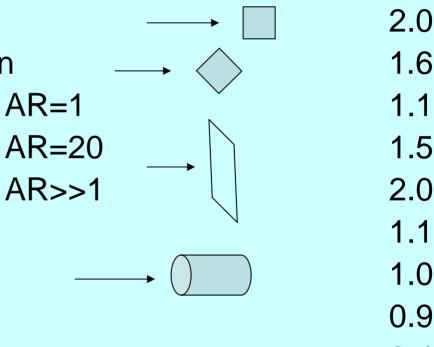
N = 10000 ; $2.22 * H_{1/3}$

Forces in steady flow

- Streamlined vs. Bluff Bodies
 - Bluff: Cylinders, blocks, higher drag, lower lift, largescale separation and wake
 - Streamlined: airplanes and ship hulls, Lower drag but higher lift, avoids separation to minimize wake
 - Tradeoff in Directional Stability of the body:
 - A fully streamlined fuselage/fairing is unstable.
 - Drag aft adds stability, e.g., a bullet
 - Wings aft add stability, e.g., fins, stabilizers
 - Wings forward decrease stability, but improve maneuverability.
- Turbulent vs. Laminar flow
- High- vs. low-speed flow

Concept of Drag, Lift, Moment (2D)

Typical nondimensionalization:


Drag = $\frac{1}{2} \rho U^2 A C_d$, where A is (typically) frontal area or wetted area Lift = $\frac{1}{2} \rho U^2 A C_l$, where A is usually a planform area Moment = $\frac{1}{2} \rho U^2 DL^2 C_m$, where L is characteristic body length, and D is characteristic width (or diameter)

Typical Drag Coefficients (frontal area)

- Square cylinder section
- Diamond cylinder section
- Thin rect. plate

- Circular cylinder section
- Circular cylinder end on
- 1920 Automobile
- Volkswagon Bus
- Modern Automobile
- MIT Solar Car?

Recommended References

- Fluid-Dynamic Lift. S.F. Hoerner, 1975, Hoerner Fluid Dynamics, Bakersfield, CA.
- Principles of Naval Architecture, Volume III (Motions in Waves and Controllability), E.V. Lewis, ed., 1989, SNAME, Jersey City, NJ.
- Fluid Mechanics, M.C. Potter and J.F. Foss, 1982, Great Lakes Press, Okemo, MI.
- Theory of Flight, R. von Mises, 1945, Dover, New York.
- <u>http://naca.larc.nasa.gov/</u>: NACA reports on bodies and surfaces