

Science Drivers

- In Situ Sensors
 - Development of autonomous and remote platforms
 - ROVs, AUVs
 - Cabled observatories
 - Desire to analyze targets with discrete stability regions in the deep ocean
 - Hydrothermal vent fluid
 - Gas hydrates

- Spectroscopic Sensors
 - Desire to analyze multiple species at once
 - Desire to analyze solid, liquid and gaseous targets
 - Desire for non-destructive, non-invasive analyses

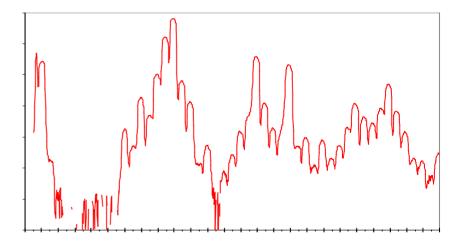
Spectroscopic Sensors

- Mass Spectrometry
 - Atomic mass to charge ratio
- Laser Raman Spectroscopy
 - Molecular vibrational modes
- Laser Induced Breakdown Spectroscopy
 - Atomic emission
- Visible Reflectance Spectroscopy
 - Reflected color

Mass Spectrometry

- Analytes (molecules, atoms) are differentiated based on their charge to mass ratio
 - Analytes are ionized
 - lons are accelerated through a magnetic or electric field which alters the trajectory of the ion beam
 - The differentiated beams are focused onto a detector

Image removed due to copyright considerations.


Please see: http://www.atmosphere.mpg.de/enid/0,55a304092d09/Nr_ss_May_2__5_vegetation/CO2/R__Monitoring_carbon_dioxide_4ni.html

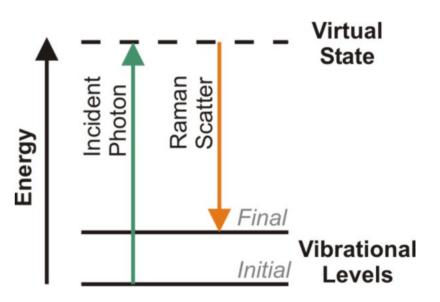
In Situ Mass Spectrometer

- Gemini In Situ Mass Spec
 - Quadrupole mass spectrometer
 - Built by Rich Camilli, WHOI/DSL
 - 10 kg in air, 50 cm long, 5000 m depth rating
 - Measures molecules from 2 to 300 AMU
 - parts-per-billion detection limit

Image removed due to copyright considerations.

In Situ Mass Spectrometry

- Advantages
 - Can analyze liquids and gases
 - Detects multiple species in a single measurement
 - Non-destructive
 - Requires no consumables


- Disadvantages
 - Cannot analyze solids
 - Is invasive
 - Sample must be drawn into the instrument
 - Must maintain an ultra high vacuum (10⁻⁵ Torr)

- Raman scattering
 - Discovered by C. V. Raman
 - 1930 Nobel Prize

- Inelastic scattering of
 monochromatic radiation
 - Sample is interrogated by a laser
 - Some of the backscattered radiation is frequency shifted
 - Shift in energy is equal to the vibrational energy of the molecule

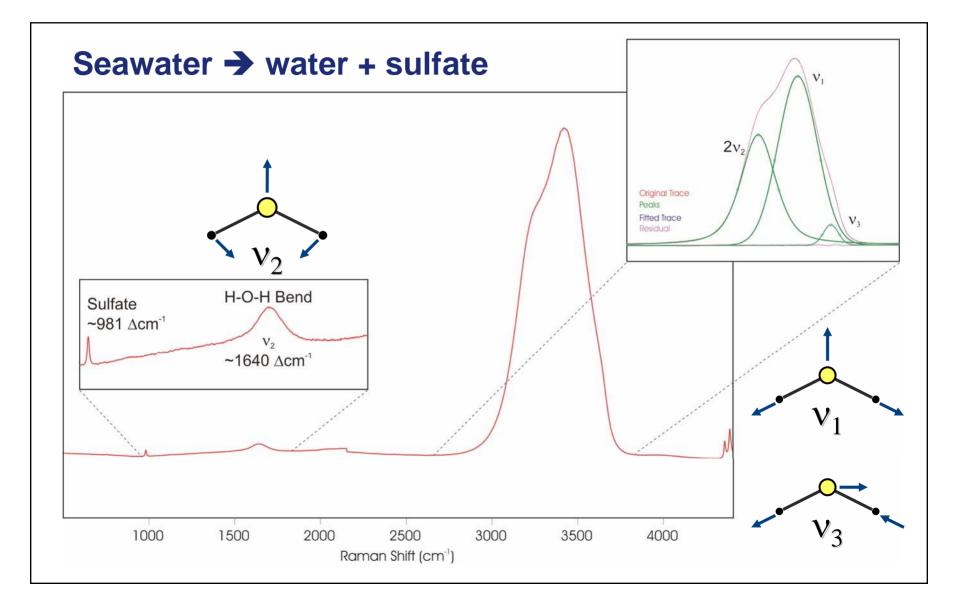
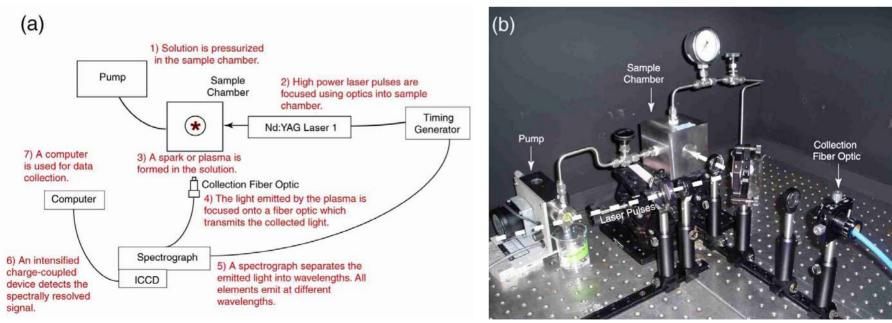

- Solids State laser for excitation
 - 532 nm, 785 nm
 - ~1-30 mW power
- Notch filters for Rayleigh line rejection
- Holographic grating
 - Duplex grating splits the spectrum into two strips
- Charge-coupled device (CCD) detector
 - Images full spectrum

Image removed due to copyright considerations. Please see: http://www.kosi.com/

- Raman spectrum provides a "fingerprint" of a substance based on chemical composition and crystal structure
 - Peak positions change with phase changes, pressure and temperature changes
 - Note that not all vibrational modes are Raman active
 - Depends on the polarizability of the molecule
 - Often complementary to IR spectroscopy


- Advantages
 - Can analyze solids, liquids and gases
 - Detects multiple species in a single measurement
 - Non-destructive
 - Non-invasive
 - Requires no consumables

- Disadvantages
 - Requires precise positioning to analyze opaque targets
 - Fluorescence can overwhelm Raman signal
 - Not all species are Raman active

Laser Induced Breakdown Spectroscopy (LIBS)

- High power laser is used to "plasmize" a sample
 - Only picograms to nanograms are used
- The spectral lines emitted from the plasma indicate the constituent elements
- Work done by Anna Michel, WHOI/DSL

Courtesy of Anna Michel. Used with permission.

LIBS

- Advantages
 - Can analyze solids, liquids and gases
 - Detects multiple species in a single measurement
 - Non-destructive
 - Non-invasive
 - Requires no consumables

- Disadvantages
 - Requires precise positioning to analyze opaque targets
 - Quenching of plasma by liquids

- A target is illuminated with white light
- The spectrum of the reflected light is analzed
- Color can be used as a proxy for some mineral species (e.g., iron species tend to be red)

Image removed due to copyright considerations. Please see: http://imagers.gsfc.nasa.gov/ems/visible.gif

- Aerosol Dust Application
 - Iron is deposited in the ocean by aerosol dust
 - Iron may be a limiting nutrient for phytoplankton
 - Buoy sampler can collect and analyze samples in situ

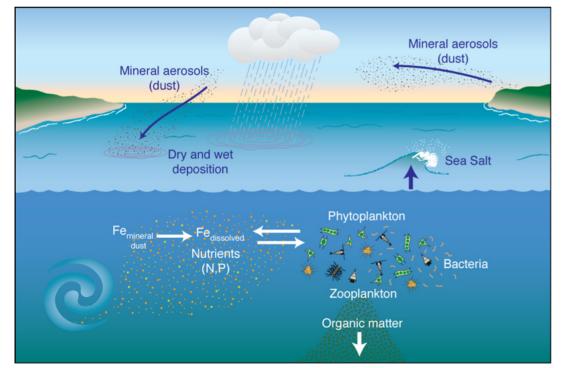
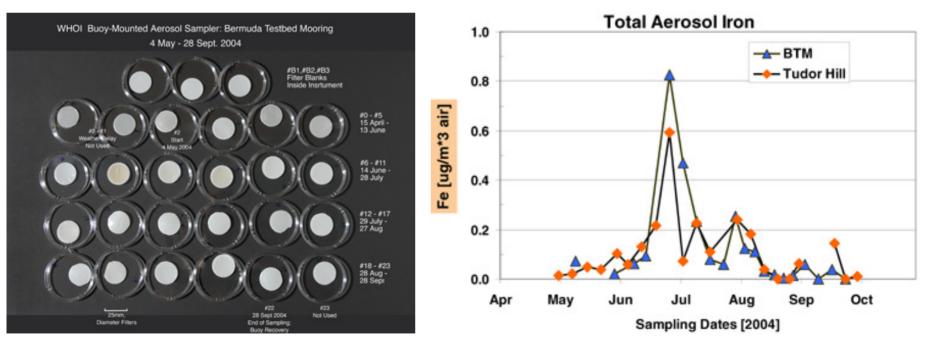



image credit: WHOI

- Aerosols collected on filters show dust events
- Color of the filter corresponds to iron content

Courtesy of Ed Sholkovitz. Used with permission.

Image removed due to copyright considerations. Please see:

Arimoto R., W. Balsam, and C. Schloesslin. "Visible spectroscopy of aerosol particles collected on filters: iron-oxide minerals." *Atmospheric Environment* 36, no. 1 (January 2002): pp. 89-96(8). (Elsevier Science)

- Advantages
 - Simplicity
 - No high vacuum
 - Not a weak signal
 - No high power laser
 - Non-destructive
 - Non-invasive
 - Requires no consumables

- Disadvantages
 - Not necessarily species specific
 - Cannot necessarily differentiate between multiple species in a sample