Overview of Underwater Acoustics

Reference used in this lecture: Lurton, X. 2002. An introduction to underwater acoustics. New York: Springer. Slides also developed by Dr. Ethem Sozer of MIT Sea Grant.

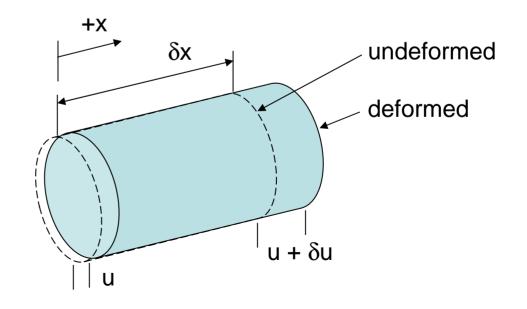
Massachusetts Institute of Technology 12.097

Definitions

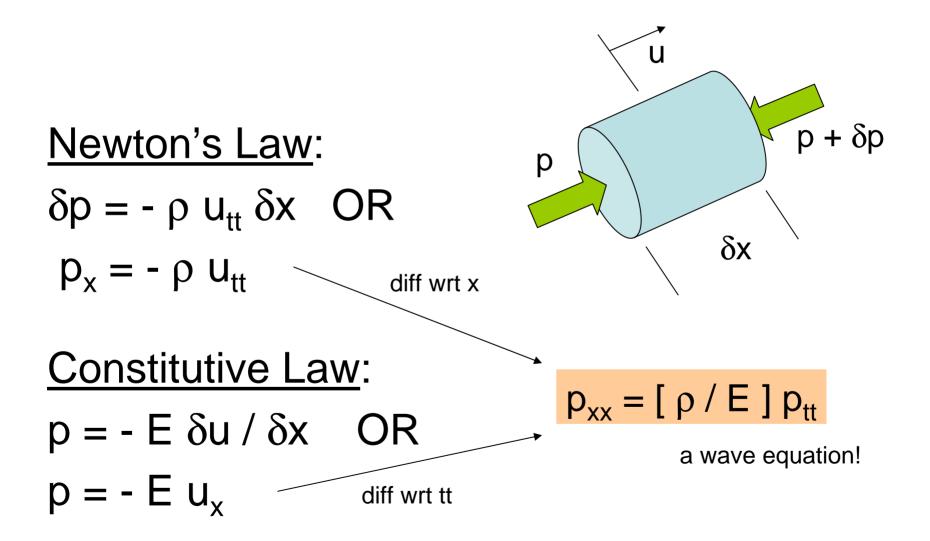
p: pressure, measured *relative to hydrostatic*, Pa

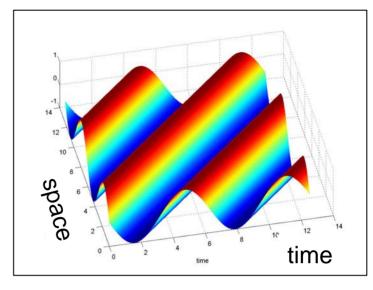
- ρ: density, measured *relative to hydrostatic*, kg/m³
- E: bulk modulus of the fluid, Pa, $\delta p = E [\delta \rho / \rho]$
- [u,v,w]: deflections in [x,y,z]-directions, relative to the hydrostatic condition, m

Then in one dimension *(pipe)* $p = E [-\delta u / \delta x]$



One-dimensional Case cont.





Let
$$p(x,t) = P_o \sin(\omega t - kx)$$
 —

Insert this in the wave equation:

->

 $\rho \sim 1000 \text{ kg/m}^3$, E $\sim 2.3e9 \text{ N/m}^2 \rightarrow c \sim 1500 \text{ m/s}$

Wavelength $\lambda = 2\pi/k = 2\pi c/\omega = c/f$; **1kHz : 1.5m**

In Three Dimensions: A CUBE

Newton's Law:

$$p_{x} = -\rho \ u_{tt} \rightarrow p_{xx} = -\rho \ u_{ttx}$$

$$p_{y} = -\rho \ v_{tt} \rightarrow p_{yy} = -\rho \ v_{tty}$$

$$p_{z} = -\rho \ w_{tt} \rightarrow p_{zz} = -\rho \ w_{ttz}$$

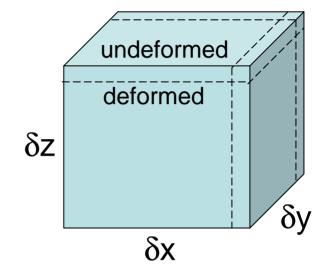
Constitutive Law:

- E
$$u_x = p / 3 \rightarrow - E u_{ttx} = p_{tt} / 3$$

- E
$$v_y = p / 3 \rightarrow - E v_{tty} = p_{tt} / 3$$

-
$$E w_z = p / 3 \rightarrow - E w_{ttz} = p_{tt} / 3$$

All directions deform uniformly



Lead to Helmholtz Equation:

$$p_{xx}+p_{yy}+p_{zz} = p_{tt} / c^2$$

or $\Delta p = p_{tt} / c^2$

where Δ is the LaPlacian operator

Particle Velocity

Consider one dimension again:

$$p_x = -\rho \ u_{tt} \rightarrow p_x = -\rho \ (u_t)_t$$

If $p(x,t) = P_o \sin(\omega t - kx)$ and $u_t(x,t) = U_{to} \sin(\omega t - kx) \rightarrow$

 $-kP_{o}\cos(\)=-\rho \ \omega \ U_{to}\cos(\) \ \ \textbf{\textbf{-}} \ \ U_{to}=P_{o}/\ \rho \ c$

Note velocity is in phase with pressure! [p c]: <u>characteristic impedance;</u>

water: ρc ~ 1.5e6 Rayleighs "hard" air: ρc ~ 500 Rayleighs "soft"

In three dimensions:

$$rp = -\rho \underline{V}_t$$
 where

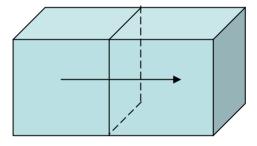
$$rp = p_x i + p_y j + p_z k \text{ and}$$
$$\underline{V} = u_t i + v_t j + w_t k$$

Note equivalence of the following:

$$\lambda = c / f$$
 and $\omega / k = c$

There is no dispersion relation here; this is the only relationship between ω and k!

Consider Average Power through a 1D surface: $P(x) = [1 / T] s^{T} p(\tau, x) u_{t}(\tau, x) d\tau$ $= [1 / T] s^{T} P_{o} U_{to} sin^{2}(\omega \tau - kx) d\tau$ $= P_{o} U_{to} / 2$ $= P_{o}^{2} / 2 \rho c = U_{to}^{2} \rho c / 2$ <u>Acoustic Intensity</u> in W/m²



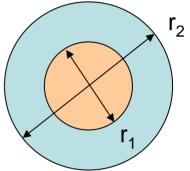
Power per unit area is pressure times velocity

If impedance ρc is high, then it takes little power to create a given pressure level; but it takes a lot of power to create a given velocity level

Spreading in Three-Space

At time t_1 , perturbation is at radius r_1 ; at time t_2 , radius $r_2 \rightarrow \mathbf{P}(r_1) = \mathbf{P}_0^2(r_1) / 2\rho c$ $\mathbf{P}(r_2) = \mathbf{P}_0^2(r_2) / 2\rho c$

Assuming no losses in water; then $P(r_{2}) = P(r_{1}) r_{1}^{2} / r_{2}^{2} = P_{o}^{2} (r_{1}) r_{1}^{2} / 2 \rho c r_{2}^{2}$ and $P_{o}(r_{2}) = P_{o}(r_{1}) r_{1} / r_{2}$



Let $r_1 = 1$ meter (standard!) \rightarrow $P(r) = P_o^2(1m) / 2 \rho c r^2$ $P_o(r) = P_o(1m) / r$ $U_{to}(r) = P_o(1m) / \rho c r$

Pressure level and particle velocity decrease linearly with range

Decibels (dB)

10 * \log_{10} (ratio of two positive scalars):

Example: $x_1 = 31.6$; $x_2 = 1 \rightarrow 1.5$ orders of magnitude difference $10^* \log_{10}(x_1/x_2) = 15 dB$ $10^* \log_{10}(x_2/x_1) = -15 dB$

RECALL $\log(x_1^2/x_2^2) = \log(x_1/x_2) + \log(x_1/x_2) = 2 \log(x_1/x_2)$

In acoustics, acoustic intensity (power) is referenced to **1** W/m^2 ; pressure is referenced to **1** μ **Pa**

$$10^{*}\log_{10}[\mathbf{P}(r) / 1 \text{ W/m}^{2}] = 10^{*}\log_{10}[\mathbf{P}_{o}^{2}(r) / 2 \rho c] / 1 \text{ W/m}^{2}]$$
$$= 20^{*}\log_{10}[\mathbf{P}_{o}(r)] - 10^{*}\log_{10}(2\rho c)$$
$$= 20^{*}\log_{10}[\mathbf{P}_{o}(r) / 1\mu\text{Pa}] - 120 - 65$$

Spreading Losses with Range

Pressure level in dB is $20 \log_{10} [P_o(r) / 1\mu Pa] - 185 =$ $20 \log_{10} [P_o(1m) / r / 1\mu Pa] - 185 =$ $20 \log_{10} [P_o(1m) / 1\mu Pa] -$ **20 \log_{10} [r]**-185

Example: At 100m range, we have lost 40dB or *four orders of magnitude* in sound intensity 40dB or *two orders of magnitude* in pressure (and particle velocity)

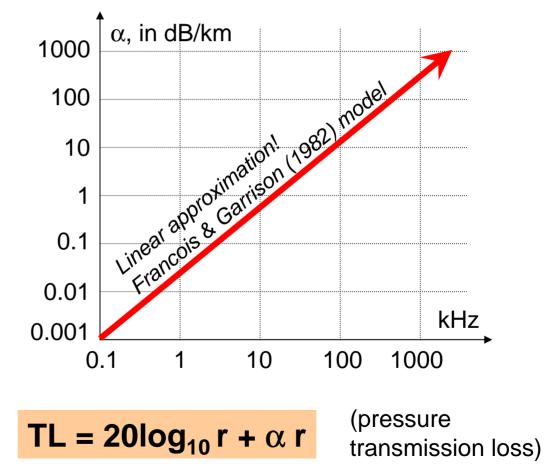
Attenuation Losses with Range

Acoustic power <u>does</u> have losses with transmission distance – primarily related to relaxation of boric acid and magnesium sulfate molecules in seawater. Also bubbles, etc.

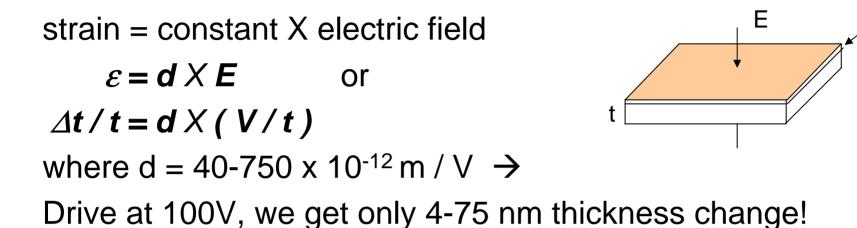
At 100 Hz, ~1dB/1000km: OK for thousands of km, ocean-scale seismics and communications

At 10kHz, ~1dB/km: OK for ~1-10km, long-baseline acoustics

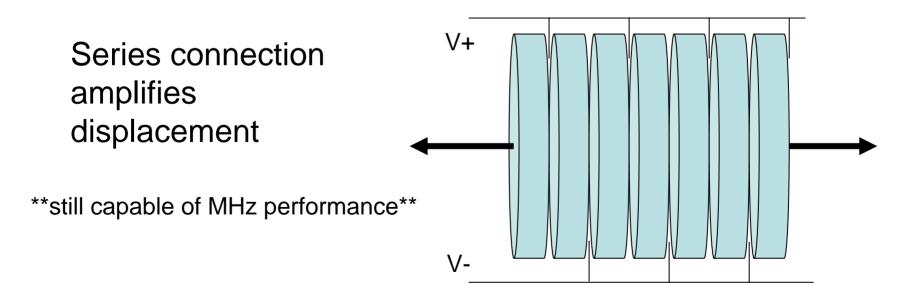
At 1MHz, 3dB/10m: OK for ~10-100m, imaging sonars, Doppler velocity loggers



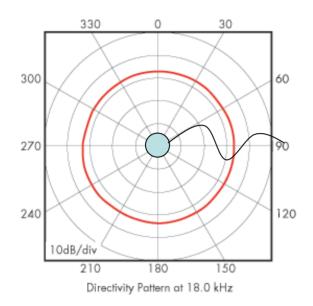
The Piezo-Electric Actuator

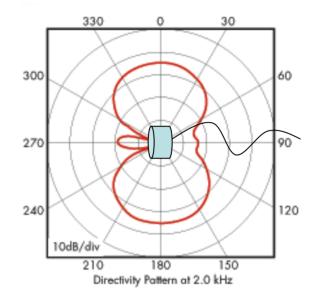


Δt



Directionality Pattern





- ITC 1001 spherical transducer
- Uniform response over all angles (0 to 2π) on both horizontal and vertical plane
- ITC 2010 toroidal transducer
- More gain over the sides (horizontal plane) than the over the top and bottom (vertical plane)

The Piezo-Electric Sensor

electric field = constant X stress

$$E = g X \sigma$$
 or
 $V = t g \sigma$
where g = 15-30 x 10⁻³ V/mN

<u>Ideal Actuator</u>: Assume the water does not impede the driven motion of the material <u>Ideal Sensor</u>: Assume the sensor does not deform in response to the water pressure waves Typical Transducer:

120 to 150 dB re 1μ Pa, 1m, 1Vmeans $10^6 - 10^{7.5} \mu$ Pa at 1m for each Volt appliedor1-30 Pa at 1m for each Volt applied

Typical Hydrophone:

-220 to -190 dB re 1μ Pa, 1Vmeans 10^{-11} to $10^{-9.5}$ V for each μ Pa incidentor 10^{-5} to $10^{-3.5}$ V for each Pa incidentor

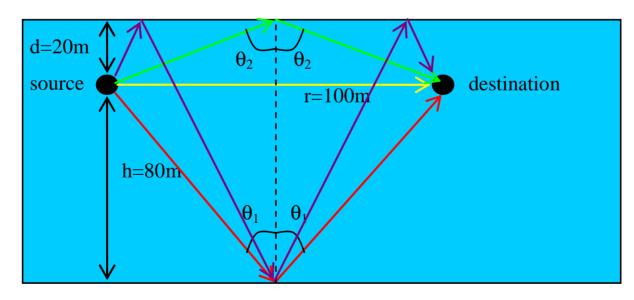
So considering a transducer with 16Pa at 1m per Volt, and a hydrophone with 10⁻⁴ V per Pa:

If V = 200V, we generate 3200Pa at 1m, or 3.2Pa at 1km, assuming spreading losses only;

The hydrophone signal at this pressure level will be 0.00032V or $320\mu V$!

Shallow Water Propagation

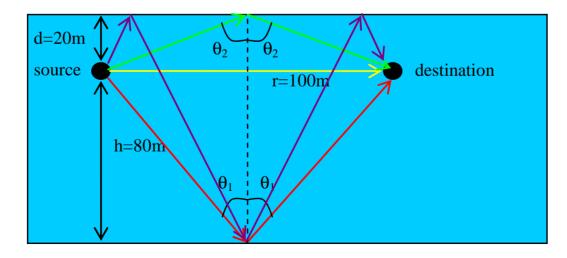
- Assumptions:
 - Constant sound speed (c = 1500 m/s)
 - Surface and bottom are smooth



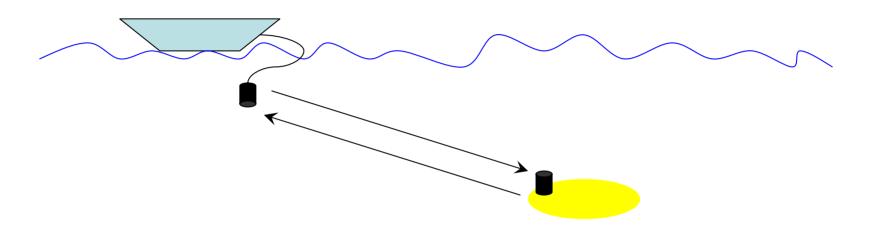
Surface reflection loss (RLs) = 1 dB Bottom reflection loss (RLb) = 3 dB

Length of propagation paths

Direct path => d0 = 100m Bottom reflection => d1 = 2h/cos(q1) = 107.7 m $\theta 1 = atan(r/2h)$ Surface reflection => d2 = $2d/cos(\theta 2) = 188.7 \text{ m}$ $\theta 2 = atan(r/2d)$ SBS reflection => d3 = $2(2d/cos(\theta 3) + h/cos(\theta 3)) = 260 \text{ m}$ BSB reflection => d4 = $(2d/cos(\theta 4) + 2(h/cos(\theta 4))) = 399.5 \text{ m}$

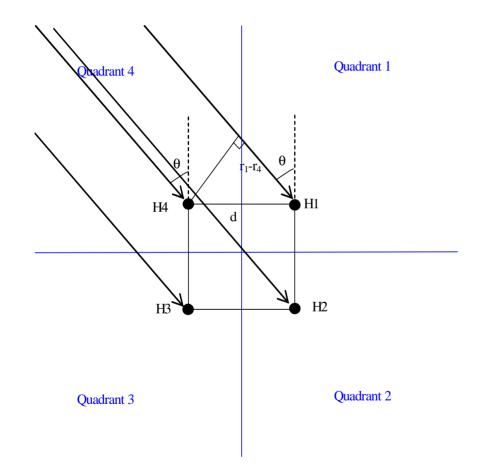


Determining the Range of a Source



- Tracker sends a pulse, $p(t) = A \sin(2\pi f_c t), 0 < t < Ts$
- Target replies, $p1(t) = A \sin(2\pi f_c(t-\tau_p-\tau_t))$
- Tracker receives, $p2(t) = A \sin(2\pi f_c(t-\tau_p-\tau_t-\tau_p))$
- How can we measure $\tau_p + \tau_t + \tau_p$?

Determining the Direction of the Target



- Four hydrophones
- Measure delay at each hydrophone
- Compare delay pairs $(\tau_1, \tau_2), (\tau_2, \tau_3), (\tau_3, \tau_4),$ (τ_4, τ_1) to find which quadrant
- Estimate the angle

 $\theta = sign(r_1 - r_4)acos(|r_1 - r_4| / d)$