
12.010 Computational Methods of
Scientific Programming

Lecturers
Thomas A Herring

Chris Hill

11/20/2010 12.010 Lec 19 2

Overview Today
• Solution of ordinary differential equations with

Mathematica and Matlab.
• Examine formulations:

– Mathematica 2-nd order (and higher order) ODE
can be directly solved with NDsolve

– Matab solved first order differential equations and
so second order equations need to be reduced to
pairs of first order equations.

• Both program allow specific results to be found such
as a zero crossing.

Codes used in today’s lecture
• Mathematic notebook

http://geoweb.mit.edu/~tah/12.010/Lec19_NDsolve.nb
• Matlab solutions are

http://geoweb.mit.edu/~tah/12.010/Lec19_ODE.m
http://geoweb.mit.edu/~tah/12.010/Lec19_animate.m
http://geoweb.mit.edu/~tah/12.010/Lec19_hit.m
http://geoweb.mit.edu/~tah/12.010/Lec19_bacc.m

11/20/2010 12.010 Lec 19 3

http://geoweb.mit.edu/~tah/12.010/Lec19_NDsolve.nb
http://geoweb.mit.edu/~tah/12.010/Lec19_ODE.m
http://geoweb.mit.edu/~tah/12.010/Lec19_animate.m
http://geoweb.mit.edu/~tah/12.010/Lec19_hit.m
http://geoweb.mit.edu/~tah/12.010/Lec19_bacc.m

11/20/2010 12.010 Lec 19 4

Equations to be solved
• Problem: High flying ballistic missile where changes in

gravity with height and drag are important. The
boundary conditions are initial velocity and launch
angle which need to be set to hit a target at a specified
distance.

• Two parts to this problem:
– Solving a pair of second order differential equations

and determining a precise end to the trajectory.
– Once this is solved, an iteration can be set up to

work out what initial velocity and launch angle is
needed to reach target distance.

11/20/2010 12.010 Lec 19 5

• Basic equation to solve is

where x is position vector, superscript double is
second time derivative, superscript dot is first time
derivative, k is drag force coefficient, h is coefficient
which shows an acceleration dependent on position
and g is constant acceleration.

• If k and h are zero, then this equation can be solve
analytically.

Differential equations

˙ ̇ x k(˙ x)2 hx g = 0

–

–

–

11/20/2010 12.010 Lec 19 6

More basic equations

• We solve the problem in 2-D so that vector x has
components x and z.

• Equation for gravity

• Drag effects

where V is velocity, r is density of air (1.29 kg/m3 with
an exponential decay height of 7.5 km)

F =
GMm

r2 =
GMm

(R + h)2
GMm

R2 (1 2h /R) = (9.806 3.0784 10 6h)m

Fd = 1
2
Cd V

2A ˆ V

×

ρ

–

–

–

─

11/20/2010 12.010 Lec 19 7

Mathematica Setup
• To solve this problem in Mathematic use NDSolve.
• solution = NDSolve[

{z''[t] == grav[z[t]] + dragz[cd, x'[t], z'[t], z[t]],
 x''[t] == dragx[cd, x'[t], z'[t], z[t]],
 x[0] == 0, z[0] == 0,
x'[0] == vx, z'[0] == vz},
 {x, z}, {t, 0, 1000}];
hz[t_] := Evaluate[z[t] /. solution];
hx[t_] := Evaluate[x[t] /. solution];

• First two equations are 2nd order differential equations to solve
(z’’ and x’’); grav and dragz/x are functions); the terms below
this are boundary conditions. Last trwo entries are one way to
access the values of the solution (i.e., hz[100] will return value of
z at time 100 seconds.

11/20/2010 12.010 Lec 19 8

Mathematic setup
• The functions needed here are:

Gravity here depends on height (x - coordinate) *)
grav[z_] := -9.806 + 3.0786 10^(-6) z;
(* Drag also depends on height because the air density
decreases with height *)
dragz[cd_, xd_, zd_,
 z_] := -(1.29*Exp[-z/(7500.)]*Sqrt[xd^2 + zd^2]*zd*cd*
 xarea)/(2 mass);
dragx[cd_, xd_, zd_,
 z_] := -(1.29*Exp[-z/(7500.)]*Sqrt[xd^2 + zd^2]*xd*cd*
 xarea)/(2 mass);

• The cd_ (drag coefficient is used in the functions so that
Manipulate[] can be used to generate dynamic plots.

• The Lec19_NDsolve.nb note book implements this solution

http://geoweb.mit.edu/~tah/12.010/Lec19_NDsolve.nb

11/20/2010 12.010 Lec 19 9

Additional Mathematica feature
• In this problem we want to hit a specific target distance

and to do that we use FIndRoot
• The solution on the earlier slides provides values of x

and z as a function of time; we now want to find the
time when z is zero again (any height could be
chosen) and then we change the initial velocity so that
x is a specific value at this value of z.

• This is done with:
zerot = t /. FindRoot[hz[t] == 0 , {t, 20, 500}];
derr = targdist - First[hx[zerot]];
(First[] is needed here because hx[t] returns a list
(which in this case contains just 1 item).

Matlab setup
• The Matlab solution to this problem is a little different because

Matlab solvers only solve first-order differential equations, so we
need to repose a 2nd order equation as two first order one.

With Matlab we solve for y(t) and x(t). In our case these are
vector quantities.

11/20/2010 12.010 Lec 19 10

f

f

11/20/2010 12.010 Lec 19 11

Matlab setup
• The ODE solvers in Matlab take a vector containing the variables

to be solved, the initial values of the vector contain the initial
values (boundary conditions at time zero). We call this vector y.

• For the ballistic problem with 2 2nd order equations and hence 4
1st order equations, y is 4 elements long.

• An m-file function is supplied that given the the vector y, returns
dy/dt. Other parameters are often needed for this calculation
such gravity, drag coefficients, area etc and these can be passed
into to m-file or by declared global (easiest approach in general).

• In our case the vector y is: y(1) - x-position; y(2) - z-position, y(3) -
x velocity and y(4) - z velocity;
dy/dy called dy is dy(1) - x velocity (y(3)); dy(2) - z velocity (y(4));
dy(3) - x acceleration (drag) and dy(4) - z acceleration (gravity
and drag).

11/20/2010 12.010 Lec 19 12

ODE solvers
• In addition to the acceleration m-file, and m-file can also be

specified that allows events to be detected.
• In our case here that event is the missile hitting the ground again

(ie., the height becoming zero).

function

[value,isterminal,direction]=Lec19_hit(t,y)
% Locate the time when height passes through zero

% in a decreasing direction
% and stop integration.
value = y(2); % detect height = 0
isterminal = 1; % stop the integration
direction = -1; % negative direction

11/20/2010 12.010 Lec 19 13

ODE Solver
• The name of the event function and other

characteristics of the ODE solution are set with the
odeset command

• These options allow the tolerances on the solution
accuracy to be set. These can be set as relative or
absolute accuracy.

• There are a number of ODE solvers that use different
order of integration and some are posed to solve stiff
problems (i.e., problems where solution vary slowly but
can have nearby solutions that vary rapidly. These
problems need to careful with the size of step they
take to avoid unstable results and to run rapidly.

11/20/2010 12.010 Lec 19 14

ODE Solvers
• Use of ODE Solvers in Matlab (demonstrated in class)
• Vector y is 2-d position and velocity (1:4).
y0 = [0.0; 0.0; vx; vz];

[t,y,te,ye,ie] = ode23(@Lec19_bacc,[0:1:tmax],y0,options);

– The Lec19_bacc routine computes accelerations. dy/dt is returned so that
dy[1]=d(pos)/dt=y[3]; dy[2]=y[4]; and dy[3] and dy[4] are new accelerations

function dy = Lec19_bacc(t, y)

% Lec19_bacc: Computes ballistic accelerations

• Options sets ability to detect event such as hitting ground
options = odeset('AbsTol',[terr 1 1 1],'Events',’Lec19_hit');

function [value,isterminal,direction] = Lec19_hit(t,y)

Value returns the height.

– Look through Matlab help and use demo program

– Solutions in Lec19_ODE.m, Lec19_bacc.m, Lec19_hit.m and
Lec19_animate.m

11/20/2010 12.010 Lec 19 15

Example solutions

Here Cd is

changed and

effects on

trajectory can

be seen

11/20/2010 12.010 Lec 19 16

Summary
• Examined solution of differential equations using

NDsolve and Findroots in Mathematica
• Using ODExx in Matlab and the options that allow

events to be dected.
• Example of multiple events is given with ballode

command in Matlab

MIT OpenCourseWare
http://ocw.mit.edu

12.010 Computational Methods of Scientific Programming
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

