
12.010 Computational Methods of
Scientific Programming

Lecturers
Thomas A Herring

Chris Hill

Overview

• Part 1: Python Language Basics – getting started.
• Part 2: Python Advanced Usage – the utility of Python

11/10/2011 12.010 Lec P1 2

11/10/2011 12.010 Lec P1 3

Part1: Summary of Python basics

• Today we will look at:
– History
– Python features
– Getting Python and help
– Modes of running Python
– Basics of Python scripting
– Variables and Data types
– Operators
– Conditional constructs and loops

11/10/2011 12.010 Lec P1 4

History

• Python was created by Guido van Rossum in the late 1980’s at
the National Research Institute for Mathematics and Computer
Science in the Netherlands. Like Perl, Python source code is
available under the GNU General Public License (GPL).

• Python is derived from many other languages, including ABC,
Modula-3, C, C++, Algol-68, SmallTalk, and Unix shell and other
scripting languages.

• Python is a general purpose interpreted, interactive, object-
oriented, high-level programming language.

• Current release version is version 2.6.? available for UNIX, PC
and Mac. Version 3 is under development.

What is Python
• Python is a high-level, interpreted, interactive and object oriented-

scripting language, designed to be highly readable, commonly
uses English keywords.

– Python is Interpreted: This means that it is processed at
runtime by the interpreter and you do not need to compile your
program before executing it. This is similar to PERL and PHP.

– Python is Interactive: This means that you can actually sit at a
Python prompt and interact it directly to write your programs.

– Python is Object-Oriented: This means that Python supports
Object-Oriented style or technique of programming that
encapsulates code within objects.

– Python is Beginner's Language: Python is a great language
for the beginner programmers and supports the development
of a wide range of applications.

11/10/2011 12.010 Lec P1 5

Python Features
• Feature highlights include:

– Easy-to-learn: Python has relatively few keywords, simple
structure, and a clearly defined syntax. This allows the student
to pick up the language in a relatively short period of time.

– Easy-to-read: Python code is clearly defined and if well written
visually simple to read and understand.

– Easy-to-maintain: Python's success is that its source code is
fairly easy-to-maintain.

– A broad standard library: One of Python's greatest strengths is
the bulk of the library is very portable and cross-platform
compatible on UNIX, Windows, and Macintosh.

– Interactive Mode: Support for an interactive mode in which
you can enter results from a terminal right to the language,
allowing interactive testing and debugging of snippets of code.

11/10/2011 12.010 Lec P1 6

Python Features

– Portable: Python can run on a wide variety of hardware
platforms and has the same interface on all platforms.

– Extendable: You can add low-level modules to the Python
interpreter. These modules enable programmers to add to or
customize their tools to be more efficient.

– Database Aware: Python provides interfaces to all major
commercial databases.

– GUI Programming: Python supports GUI applications that can
be created and ported to many system calls, libraries, and
windows systems, such as Windows MFC, Macintosh, and the
X Window system of Unix.

– Scalable: Python provides a better structure and support for
large programs than shell scripting.

 11/10/2011 12.010 Lec P1 7

Important Features

• Apart from the above mentioned features, Python has a big list of
important structural features that make it an efficient programming
tool, few are listed below:

– Built-in high level data types: strings, lists, dictionaries, etc.
– The usual control structures if, if-else, if-elif-else, while plus a

powerful (for) iterator.
– It can be used as a scripting language or can be compiled to

byte-code for building large applications.
– Supports automatic garbage collection.
– It can be easily integrated with Fortran, C, C++, CORBA, and

Java, etc……

11/10/2011 12.010 Lec P1 8

11/10/2011 12.010 Lec P1 9

Getting Python & Help

• Getting Python:
– The most up-to-date and current source code, binaries,

documentation, news, etc. is available at the official website of
Python:Python Official Website : http://www.python.org/

• Documentation
– You can download the Python documentation from the

following site. The documentation is available in HTML, PDF,
and PostScript formats: http://docs.python.org/index.html

• Tutorial
– You should definitely check out the tutorial on the Internet at:

http://docs.python.org/tutorial/.

http://www.python.org/
http://docs.python.org/index.html
http://docs.python.org/tutorial/

11/10/2011 12.010 Lec P1 10

Running Python

• There are three different ways to start Python:

– (1) Interactive Interpreter: You can enter python and start
coding right away in the interactive interpreter by starting it
from the command line. You can do this from Unix, DOS, or
any other system which provides you a command-line
interpreter or shell window.

 >>>

– 2) Script from the Command-line: A Python script can be
executed at command line by invoking the interpreter on your
application, as in the following:

python script.py # Unix/Linux

Running Python

– (3) Integrated Development Environment (IDE): You can run

Python from a graphical user interface (GUI) environment. All
you need is a GUI application on your system that supports
Python.

http://wiki.python.org/moin/IntegratedDevelopmentEnvironments

11/10/2011 12.010 Lec P1 11

http://wiki.python.org/moin/IntegratedDevelopmentEnvironments

11/10/2011 12.010 Lec P1 12

First Program
• Interactive mode:

– Invoking the interpreter without passing a script file as a
parameter brings up the following prompt:

computer# python
Python 2.6.2 (r262:71600, Apr 16 2009, 09:17:39)
[GCC 4.0.1 (Apple Computer, Inc. build 5250)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>
– Type the following text to the right of the Python prompt and press

the Enter key:
>>> print "Hello, Python!";
– This will produce following output:
Hello, Python!

First Program

• Script Mode:
– Invoking the interpreter with a script parameter begins

execution of the script and continues until the script is
finished. When the script is finished, the interpreter is no
longer active. All python files will have extension .py.

– Example test.py file contains.
#!/usr/bin/python
print "Hello, Python!";

– Here I assumed that you have Python interpreter available in
the /usr/bin directory. Now try to run this program as follows:

computer# chmod +x test.py # This is to make file executable
computer# python test.py

– This will produce following output:
Hello, Python!

11/10/2011 12.010 Lec P1 13

Python Identifiers

• A Python identifier is a name used to identify a variable, function,
class, module, or other object. An identifier starts with a letter A to
Z or a to z or an underscore (_) followed by zero or more letters,
underscores, and digits (0 to 9).Python does not allow
punctuation characters such as @, $, and % within identifiers.

• Python is a case sensitive programming language. Thus Variable
and variable are two different identifiers in Python.

11/10/2011 12.010 Lec P1 14

Python Reserved Words

• The following list shows the reserved words in Python.
These reserved words may not be used as constant or
variable or any other identifier names. Reserved words
contain lowercase letters only.

and, exec, not, assert, finally, or, break, for, pass, class,
from, print, continue, global, raise, def, if, return, del,
import, try, elif, in, while, else, is, with, except, lambda,
yield.

11/10/2011 12.010 Lec P1 15

Lines and Indentation

• One of the most prominent features of Python is the fact that
there are no braces to indicate blocks of code for class and
function definitions or flow control. Blocks of code are denoted by
line indentation. The number of spaces in the indentation is
variable, but all statements within the block must be indented the
same amount. Example:

if True:
 print "True”
else:
 print "False"

11/10/2011 12.010 Lec P1 16

Lines

• Multi-Line Statements: Statements in Python typically end with a
new line. Python does, however, allow the use of the line
continuation character (\) to denote that the line should continue.
For example:

total = item_one + \
 item_two + \
 item_three
• Statements contained within the [], {}, or () brackets do not need

to use the line continuation character. For example:
days = ['Monday', 'Tuesday', 'Wednesday',
 'Thursday', 'Friday’]
• line containing only whitespace, possibly with a comment, is

known as a blank line, and Python totally ignores it.

11/10/2011 12.010 Lec P1 17

Lines
• Quotations in Python: Python accepts single ('), double (") and

triple (''' or """) quotes to denote string literals, as long as the
same type of quote starts and ends the string. The triple quotes
can be used to span the string across multiple lines. For example,
all the following are legal:

word = 'word’
sentence = “This is a sentence.”
paragraph = ‘’’This is a paragraph. It is made up of multiple lines

 and sentences.’’’
• Comments in Python: A hash sign (#) that is not inside a string

literal begins a comment. All characters after the # and up to the
physical line end are part of the comment, and the Python
interpreter ignores them.

First comment
print "Hello, Python!"; # second comment

 11/10/2011 12.010 Lec P1 18

Lines

• Multiple Statements on a Single Line: The semicolon (;) allows
multiple statements on the single line given that neither statement
starts a new code block. Here is an example:

import sys; x = 'foo'; sys.stdout.write(x + '\n')
• Multiple Statement Groups called Suites: Groups of individual

statements making up a single code block are called suites.
Compound or complex statements, such as “if”, “while”, “def”,
and “class”, are those which require a header line and a suite.
Header lines begin the statement and terminate with a colon (:)
are followed by one or more lines form the suite. Example:

if expression :
 suite
elif expression :
 suite
else :
 suite

 11/10/2011 12.010 Lec P1 19

Example Python code
• Following is the example having various statement blocks: Don't try to understand logic or

different functions used. Just make sure you see the various indented blocks.
#!/usr/bin/python

import sys

file_finish = 'file_finish'

file_text = ''

try: # open file stream

 file = open(file_name, "w")

except IOError: # come here on IO Error

 print "There was an error writing to", file_name

 sys.exit()

print "Enter '", file_finish,

print "' When finished”

while file_text != file_finish:

 file_text = raw_input("Enter text: ")

 if file_text == file_finish: # close the file

 file.close

 break

 file.write(file_text)

 file.write("\n")

file.close()

 11/10/2011 12.010 Lec P1 20

The Python Standard Library

• The “Python standard library” contains several different kinds of
components. It contains data types that would normally be
considered part of the “core” of a language, such as numbers,
strings, lists etc….

• The library also contains built-in functions and objects that can be
used by all Python code without the need of an import statement.
http://docs.python.org/library/stdtypes.html

• The bulk of the library (the good stuff) consists of a collection of
modules which are accessed using the import statement.
http://docs.python.org/library/index.html

• The standard library is huge – this is the power of Python……

11/10/2011 12.010 Lec P1 21

http://docs.python.org/library/stdtypes.html
http://docs.python.org/library/index.html

Variables and Data Types

• Python variables do not have to be explicitly declared
to reserve memory space. The declaration happens
automatically when you assign a value to a variable.
The equal sign (=) is used to assign values to
variables.

#!/usr/bin/python
counter = 100 # An integer assignment
miles = 1000.0 # A floating point
name = "John" # A string

11/10/2011 12.010 Lec P1 22

Assignments

• Multiple Assignment:

• You can also assign a single value to several variables

simultaneously. For example:

a = b = c = 1

• Here, an integer object is created with the value 1, and all three
variables are assigned to the same memory location.

• You can also assign multiple objects to multiple variables. For
example:

a, b, c = 1, 2, "john"
• Here two integer objects with values 1 and 2 are assigned to

variables a and b, and one string object with the value "john" is
assigned to the variable c.

11/10/2011 12.010 Lec P1 23

Data Types

• The data stored in memory can be of many types. For example, a
persons age is stored as a numeric value and the address is
stored as alphanumeric characters.

• Python has some standard types that are used to define the
operations possible on them and the storage method for each of
them.

• Python has five standard data types:
– Number
– String
– List (entries enclosed in [], list methods available)
– Tuple (comma separated values of possible different types).
– Dictionary (un-ordered, key:value sequences in []

11/10/2011 12.010 Lec P1 24

Numbers

• Number data types store numeric values. They are immutable
data types, which means that changing the value of a number
data type results in a newly allocated object. Number objects are
created when you assign a value to them.

• Python supports four different numerical types:

– int (signed integers) = C long precision
– long (long integers [can also be represented in octal and

hexadecimal]) unlimited precision
– float (floating point real values) = C double precision
– complex (complex numbers) = C double precision

11/10/2011 12.010 Lec P1 25

Number Examples

• Here are some examples of numbers:
int long float complex

10 51924361L 0.0 3.14j
100 -0x19323L 15.20 45.j
-786 0122L -21.9 9.322e-36j
-0490 535633629843L -90. -.6545+0J
-0x260 -052318172735L -32.54e100 3e+26J
0x69 -472188598529L 70.2-E12 4.53e-7j

• Python allows you to use a lowercase L with long, but it is recommended

that you use only an uppercase L to avoid confusion with the number 1.
Python displays long integers with an uppercase L.

• A complex number consists of an ordered pair of real floatingpoint
numbers denoted by a + bj, where a is the real part and b is the
imaginary part of the complex number.

11/10/2011 12.010 Lec P1 26

Number conversions

• Python converts numbers internally in an expression containing
mixed types to a common type for evaluation. But sometimes,
you'll need to convert a number explicitly from one type to another
to satisfy the requirements of an operator or function parameter.

– Type int(x) to convert x to a plain integer.
– Type long(x) to convert x to a long integer.
– Type float(x) to convert x to a floating-point number.
– Type complex(x) to convert x to a complex number with real

part x and imaginary part zero.
– Type complex(x, y) to convert x and y to a complex number

with real part x and imaginary part y. x and y are numeric
expressions

11/10/2011 12.010 Lec P1 27

Number Functions

• Some are some built in functions.
http://docs.python.org/library/stdtypes.html#numeric-
types-int-float-long-complex

• Some need to be added via the import statement.
http://docs.python.org/library/math.html

Example:
Import math
x=[1,2,3,4,5]
math.fsum(x)
15.0

11/10/2011 12.010 Lec P1 28

http://docs.python.org/library/stdtypes.html
http://docs.python.org/library/stdtypes.html
http://docs.python.org/library/stdtypes.html
http://docs.python.org/library/stdtypes.html
http://docs.python.org/library/stdtypes.html
http://docs.python.org/library/stdtypes.html
http://docs.python.org/library/stdtypes.html
http://docs.python.org/library/stdtypes.html
http://docs.python.org/library/stdtypes.html
http://docs.python.org/library/stdtypes.html
http://docs.python.org/library/stdtypes.html
http://docs.python.org/library/math.html

Strings

• Strings in Python are identified as a contiguous set of characters
in between quotation marks.

• Python allows for either pairs of single or double quotes. Subsets
of strings can be taken using the slice operator ([] and [:]) with
indexes starting at 0 in the beginning of the string and working
their way from -1 at the end.

• The plus (+) sign is the string concatenation operator, and the
asterisk (*) is the repetition operator.

11/10/2011 12.010 Lec P1 29

String Examples
#!/usr/bin/python
str = 'Hello World!’
print str # Prints complete string
print str[0] # Prints first character of the string
print str[2:5] # Prints characters starting from 3rd to 6th
print str[2:] # Prints string starting from 3rd character
print str * 2 # Prints string two times
print str + "TEST" # Prints concatenated string
• The above code will produce following output:
Hello World!
H
llo
llo World!
Hello World!Hello World!
Hello World!TEST

11/10/2011 12.010 Lec P1 30

String Formatting

• String Formatting Operator:
• One of Python's coolest features is the string format operator %.

This operator is unique to strings and makes up for the lack C's
printf().

• Example:
#!/usr/bin/python
print "My name is %s and weight is %d kg!" % ('Zara', 21)
• This will produce following result:
My name is Zara and weight is 21 kg!
• Details on string formatting found at:

http://docs.python.org/library/stdtypes.html#string-formatting-
operations

11/10/2011 12.010 Lec P1 31

http://docs.python.org/library/stdtypes.html

Built in String Method

• Python includes following built in string method:
• Type help(str) or goto -

http://docs.python.org/library/stdtypes.html#string-methods
• Example:
>>>'The happy cat ran home.'.upper()
'THE HAPPY CAT RAN HOME.’
>>> 'The happy cat ran home.'.find('cat')
10
>>> 'The happy cat ran home.'.find('kitten')
-1
>>> 'The happy cat ran home.'.replace('cat', 'dog')
'The happy dog ran home.'

11/10/2011 12.010 Lec P1 32

String Module

• You can also use the equivalent and extra functions

from the string module.
http://docs.python.org/library/string.html

• Example:

>>> import string
>>> s1 = 'The happy cat ran home.’
>>> string.find(s1, 'happy')
4

11/10/2011 12.010 Lec P1 33

http://docs.python.org/library/string.html

Lists

• Lists are the most versatile of Python's compound data types. A
list contains items separated by commas and enclosed within
square brackets ([]).

• To some extent, lists are similar to arrays in C. One difference
between them is that all the items belonging to a list can be of
different data type.

• The values stored in a list can be accessed using the slice
operator ([] and [:]) with indexes starting at 0 in the beginning
of the list and working their way to end-1.

• The plus (+) sign is the list concatenation operator, and the
asterisk (*) is the repetition operator.

• Items may also be inserted or added to lists

11/10/2011 12.010 Lec P1 34

List Examples
#!/usr/bin/python
list = ['abcd', 786 , 2.23, 'john', 70.200]
tinylist = [123, 'john']
print list # Prints complete list
print list[0] # Prints first element of the list
print list[1:3] # Prints elements starting from 2nd to 4th
print list[2:] # Prints elements starting from 3rd element
print tinylist * 2 # Prints list two times
print list + tinylist # Prints concatenated lists
• The above code will produce following output:
['abcd', 786, 2.23, 'john', 70.2]
abcd
[786, 2.23]
[2.23, 'john', 70.2]
[123, 'john', 123, 'john']
['abcd', 786, 2.23, 'john', 70.2, 123, 'john']

11/10/2011 12.010 Lec P1 35

Built in List Functions and Methods
Python List functions
cmp(list1, list2) Compares elements of both lists.
len(list) Gives the total length of the list.
max(list) Returns item from the list with max value.
min(list) Returns item from the list with min value.
list(seq) Converts a tuple into list.
Python list methods

list.append(obj) Appends object obj to list
list.count(obj) Returns count of how many times obj occurs in list
list.extend(seq) Appends the contents of seq to list
list.index(obj) Returns the lowest index in list that obj appears
list.insert(index, obj) Inserts object obj into list at offset index
list.pop(obj=list[-1]) Removes and returns last object or obj from list
list.remove(obj) Removes object obj from list
list.reverse() Reverses objects of list in place
list.sort([func]) Sorts objects of list, use compare func if given

 11/10/2011 12.010 Lec P1 36

List Functions and Method

Examples
items = [111, 222, 333]
>>> items[111, 222, 333]
•To add an item to the end of a list, use:
>>> items.append(444)
>>> items[111, 222, 333, 444]
•To insert an item into a list, use:
>>> items.insert(0, -1)
>>> items[-1, 111, 222, 333, 444]
•You can also push items onto the right end of a list and pop items off the
right end of a list with append and pop.
>>> items.append(555)
>>> items[-1, 111, 222, 333, 444, 555]
>>> items.pop()
555
>>> items[-1, 111, 222, 333, 444]

11/10/2011 12.010 Lec P1 37

Tuples

• A tuple is another sequence data type that is similar to
the list. A tuple consists of a number of values
separated by commas. Unlike lists, however, tuples
are enclosed within parentheses.

• The main differences between lists and tuples are:
Lists are enclosed in brackets ([]), and their elements
and size can be changed, while tuples are enclosed in
parentheses (()) and cannot be updated. Tuples can
be thought of as read-only lists.

11/10/2011 12.010 Lec P1 38

Dictionary

• Python's dictionaries are hash table type. They work
like associative arrays or hashes found in Perl and
consist of key-value pairs.

• Keys can be almost any Python type, but are usually
numbers or strings. Values, on the other hand, can be
any arbitrary Python object.

• Dictionaries are enclosed by curly braces ({ }) and
values can be assigned and accessed using square
braces ([]).

• Dictionaries have no concept of order among
elements. It is incorrect to say that the elements are
"out of order"; they are simply unordered.

11/10/2011 12.010 Lec P1 39

Dictionary Examples
#!/usr/bin/python
dict = {}; dict['one'] = "This is one”; dict[2] = "This is two”
tinydict = {'name': 'john','code':6734, 'dept': 'sales'}
print dict # Prints complete dictionary
print dict['one'] # Prints value for 'one' key
print dict[2] # Prints value for 2 key
print tinydict # Prints complete dictionary
print tinydict.keys() # Prints all the keys
print tinydict.values() # Prints all the values
• The above code will produce following output:
{‘one’:’This is one’,2:’This is two’}
This is one
This is two
{'dept': 'sales', 'code': 6734, 'name': 'john'}
['dept', 'code', 'name']
['sales', 6734, 'john']

11/10/2011 12.010 Lec P1 40

Data Type Conversions

• Sometimes you may need to perform conversions between the
built-in types. To convert between types you simply use the type
name as a function.

• There are several built-in functions to perform conversion from
one data type to another. These functions return a new object
representing the converted value.

11/10/2011 12.010 Lec P1 41

Conversions

int(x)Converts x to an integer.
long(x) Converts x to a long integer.
float(x) Converts x to a floating-point number.
complex(real [,imag]) Creates a complex number.
str(x) Converts object x to a string representation.
repr(x) Converts object x to an expression string.
eval(str) Evaluates a string and returns an object.
tuple(s) Converts s to a tuple.
list(s) Converts s to a list.
set(s) Converts s to a set.
chr(x) Converts an integer to a character.
unichr(x) Converts an integer to a Unicode character.
ord(x) Converts a single character to its integer value.
hex(x) Converts an integer to a hexadecimal string.
oct(x) Converts an integer to an octal string.

 11/10/2011 12.010 Lec P1 42

Operators

• What is an operator?
• Simple answer can be given using expression 4 + 5 is equal to 9.

Here 4 and 5 are called operands and + is called operator.

• Python language supports following type of operators.
– Arithmetic Operators
– Comparision Operators
– Logical (or Relational) Operators
– Assignment Operators
– Conditional (or ternary) Operators

11/10/2011 12.010 Lec P1 43

Arithmetic Operators
Python Arithmetic Operators: Assume a = 10 and b = 20
+ Addition - Adds values on either side of the operator: a + b

will give 30
- Subtraction - Subtracts right hand operand from left hand

operand: a - b will give -10
* Multiplication - Multiplies values on either side of the

operator: a * b will give 200
/ Division - Divides left hand operand by right hand operand:

b / a will give 2
% Modulus - Divides left hand operand by right hand operand

and returns remainder: b % a will give 0
** Exponent - Performs exponential (power) calculation on

operators: a**b will give 10 to the power 20
// Floor Division - The division of operands where the result is

the quotient in which the digits after the decimal point are
removed. 9//2 is equal to 4 and 9.0//2.0 is equal to 4.0

 11/10/2011 12.010 Lec P1 44

Comparison Operators

Python Comparison Operators: Assume a = 10 and b = 20 then:

== Checks if the value of two operands are equal or not, if yes then

condition becomes true. (a == b) is not true.
!= Checks if the value of two operands are equal or not, if values are

not equal then condition becomes true. (a != b) is true.
> Checks if the value of left operand is greater than the value of

right operand, if yes then condition becomes true. (a > b) is not true.
< Checks if the value of left operand is less than the value of right

operand, if yes then condition becomes true. (a < b) is true.
>= Checks if the value of left operand is greater than or equal to the

value of right operand, if yes then condition becomes true. (a >= b) is
not true.

<= Checks if the value of left operand is less than or equal to the
value of right operand, if yes then condition becomes true. (a <= b) is
true.

11/10/2011 12.010 Lec P1 45

Logical Operators

Python Logical Operators: There are following logical operators
supported by Python language Assume variable a = 10 and b =
20 then:

and Called Logical AND operator. If both the operands are true

then then condition becomes true. (a and b) is true.
or Called Logical OR Operator. If any of the two operands are

non zero then then condition becomes true. (a or b) is true.
not Called Logical NOT Operator. Use to reverses the logical

state of its operand. If a condition is true then Logical NOT
operator will make false.

11/10/2011 12.010 Lec P1 46

Assignment Operators

Python Assignment Operators: Assume a = 10 and b = 20 then:
= Simple assignment operator, Assigns values from right side

operands to left side operand: c = a + b will assign value of a + b into
c

+= Add AND assignment operator, It adds right operand to the left
operand and assign the result to left operand: c += a is equivalent
to c = c + a

-= Subtract AND assignment operator, It subtracts right operand
from the left operand and assign the result to left operand c -= a is
equivalent to c = c - a

*= Multiply AND assignment operator, It multiplies right operand with
the left operand and assign the result to left operand c *= a is equivalent
to c = c * a

11/10/2011 12.010 Lec P1 47

Assignment operators

/= Divide AND assignment operator, It divides left operand
with the right operand and assign the result to left operand c
/= a is equivalent to c = c / a

%= Modulus AND assignment operator, It takes modulus using
two operands and assign the result to left operand c %= a is
equivalent to c = c % a

**= Exponent AND assignment operator, Performs exponential
(power) calculation on operators and assign value to the left
operand c **= a is equivalent to c = c ** a

//= Floor Dividion and assigns a value, Performs floor division
on operators and assign value to the left operand c //= a is
equivalent to c = c // a

11/10/2011 12.010 Lec P1 48

If, Eles, Elif

• The if statement of Python is similar to that of other languages.
• The if statement contains a logical expression using which data

is compared, and a decision is made based on the result of the
comparison.

• The syntax of the if statement is:

if expression:
statement(s)

Note: In Python, all the statements indented by the same number of
character spaces after a programming construct are considered to
be part of a single block of code. Python uses indentation as its
method of grouping statements.

 11/10/2011 12.010 Lec P1 49

If, Else, Elif

• An else statement can be combined with an if statement. An else
statement contains the block of code that executes if the
conditional expression in the if statement resolves to 0 or a false
value.The else statement is an optional statement and there could
be at most only one else statement following an if .

• The elif statement allows you to check multiple expressions for
truth value and execute a block of code as soon as one of the
conditions evaluates to true. Like the else, the elif statement is
optional. However, unlike else, for which there can be at most one
statement, there can be an arbitrary number of elif statements
following an if.

11/10/2011 12.010 Lec P1 50

Example

if expression1:
 statement(s)
elif expression2:
 statement(s)
elif expression3:
 statement(s)
else:
 statement(s)

11/10/2011 12.010 Lec P1 51

While loop
• The while loop is one of the looping constructs available in

Python. The while loop continues until the expression becomes
false. The expression has to be a logical expression and must
return either a true or a false value

• The syntax of the while look is:

while expression:
statement(s)

Example:
#!/usr/bin/python
count = 0
while (count < 9):
 print 'The count is:', count
 count = count + 1
print "Good bye!"

11/10/2011 12.010 Lec P1 52

Infinite loop!

• Following loop will continue till you enter CNTL+C at
the command prompt:

#!/usr/bin/python
var = 1
while var == 1 : # This constructs an infinite loop
 num = raw_input("Enter a number :")
 print "You entered: ", num
print "Good bye!"

11/10/2011 12.010 Lec P1 53

For Loop

• The for loop in Python has the ability to iterate over the items of
any sequence, such as a list or a string.

• The syntax of the loop look is:

for iterating_var in sequence:
statements(s)

• For a conventional loop through index system (ie., same as
Fortran do I = 1, 10 or C for (i=1; I =<10;++) { use
for I in range(1,n+1):

• NOTE the need to go 1 more

11/10/2011 12.010 Lec P1 54

For Loop example

#!/usr/bin/python
for letter in 'Python': # First Example
 print 'Current Letter :', letter
fruits = ['banana', 'apple', 'mango']
for fruit in fruits: # Second Example
 print 'Current fruit :', fruit
print "Good bye!”
This will produce following output:
Current Letter : P
Current Letter : y
Current Letter : t
Current Letter : h
Current Letter : o
Current Letter : n
Current fruit : banana
Current fruit : apple
Current fruit : mango
Good bye!
 11/10/2011 12.010 Lec P1 55

Another For loop
• Iterating by Sequence Index:
• An alternative way of iterating through each item is by index offset

into the sequence itself:
#!/usr/bin/python
fruits = ['banana', 'apple', 'mango']
for index in range(len(fruits)):
 print 'Current fruit :', fruits[index]
print "Good bye!"
This will produce following output:
Current fruit : banana
Current fruit : apple
Current fruit : mango
Good bye!
• Here we took the assistance of the len() built-in function, which provides

the total number of elements in the tuple as well as the range() built-in
function to give us the actual sequence to iterate over.

11/10/2011 12.010 Lec P1 56

Break • The break Statement:
• The break statement in Python terminates the current loop and

resumes execution at the next statement, just like the break in C.
• The most common use for break is when some external condition

is triggered requiring a hasty exit from a loop.
• The break statement can be used in both while and for loops.

#!/usr/bin/python
for letter in 'Python': # First Example
 if letter == 'h':
 break
 print 'Current Letter :', letter
print "Good bye!”
This will produce following output:
Current Letter : P
Current Letter : y
Current Letter : t
Good bye!

11/10/2011 12.010 Lec P1 57

Continue

• The continue statement in Python returns the control to the beginning of the
while loop. The continue statement rejects all the remaining statements in the
current iteration of the loop and moves the control back to the top of the loop.

• The continue statement can be used in both while and for loops.
#!/usr/bin/python
for letter in 'Python': # First Example
 if letter == 'h':
 continue
 print 'Current Letter :', letter
print "Good bye!"
This will produce following output:

Current Letter : P
Current Letter : y
Current Letter : t
Current Letter : o
Current Letter : n
Good bye!

11/10/2011 12.010 Lec P1 58

Summary

• Today we looked at:

– History
– Python features
– Getting Python and help
– Modes of running Python
– Basics of Python scripting
– Variables and Data types
– Operators
– Conditional constructs and loops

11/10/2011 12.010 Lec P1 59

MIT OpenCourseWare
http://ocw.mit.edu

12.010 Computational Methods of Scientific Programming
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

