
12.010 Computational Methods of
Scientific Programming

Lecturers
Thomas A Herring

Chris Hill

10/20/2011 12.010 Lec 12 2

Mathematica

• History
– Developed between 1986-1988 at Wolfram Research
– Mathematica 1.0 released in 1988
– Mathematica 2.0 released in 1991
– Mathematica 3.0 released in 1996 (typesetting)
– Mathematica 4.0 released in 1999 (performance)
– Mathematica 5.0 released in 2004 (performance and features)
– Mathematica 6.0 released in 2007 (added features)
– Mathematica 8.0 Current version

• License for program lasts one year and older versions do not run
even with current license.

10/20/2011 12.010 Lec 12 3

Basics of Mathematica

• Code developed for Mathematica can be generated
while working in Mathematica.

• The Mathematica Note books (.nb extent to name) can
be used to save this development

• When working in Mathematica, help files are available
to guide usage and there can be instant feed back if
there is a problem in the code.

• We will use a Mathematica Notebook in this class to
demonstrate the ideas in the notes.

10/20/2011 12.010 Lec 12 4

Mathematica Features*

• Code (numerics, and control)
• Numerical calculations to arbitrary precision
• Symbolic calculations (algebra and calculus)
• Graphics
• Notebooks
• Several useful formats

– command line
– typeset equations
– tabular data, and many more
– Conversions to different “languages”

• These features are demonstrated in the
http://geoweb.mit.edu/~tah/12.010/12.010.Lec12.nb

http://geoweb.mit.edu/~tah/12.010/12.010.Lec12.nb

10/20/2011 12.010 Lec 12 5

Mathematica:

• Consists of two programs
– "kernel" (does all the computations)

• evaluates expressions by applying rules
– "front end" (user interface and formatting)
– Mathematica itself is written mostly in C

• Syntax follows rules, but errors are usually forgiving
• Basic Structure:

– File types:
• Mathematica code (end in ".m" by convention)
• Mathematica notebook (end in ".nb" by convention)

• Mathematica evaluates expressions by applying rules, both
those that have been defined internally and those defined by the
user, until no more rules can be applied.

10/20/2011 12.010 Lec 12 6

Mathematica: Context of Use
• Mathematic notebooks can be used in research groups

– beginning students need a place to start
– graduating students leave a legacy
– some alumni still contribute to Mathematica "packages"

• Upside
– extremely powerful (integrated work environment)
– dramatically decreases development time

• Downsides
– slower number crunching (compile or link to C). Improves with

each version.
– memory (this has vastly improved)
– single supporter of the language (Wolfram Research)

10/20/2011 12.010 Lec 12 7

Mathematica Features

• Notebooks
– easy to document work as you produce it

• State of the art numerical and symbolic evaluation
• Variable names usually say exactly what the variable is

– not a problem, since a lot can be packed into a symbol
• Contexts
• Packages
• Link to C code for number crunching
• Typesetting (TeX)
• Conversion to Fortran and C-code
• Function arguments pass by value

– more like mathematical notation

10/20/2011 12.010 Lec 12 8

Conventions

• system symbols begin with upper case letter
• user symbols begin with lower case letter
• Function arguments are enclosed in [] (square

brackets)
• Parentheses are used to assign precedence (normal

use)
• { } are used to enclose lists (each item in list can be

then acted on).

10/20/2011 12.010 Lec 12 9

Basic Structure 02

– Variable types*
• Integer (machine size or larger)
• Rational (ratio of integers with no common divisors)
• Real (machine double precision or larger)
• Complex (machine double precision or larger)
• String (can be arbitrarily long)
• Symbol
• List (set of anything -- used more than Array)
• virtually any other type can be defined

– Variable types tend to naturally get set by
Mathematica and user does not need to be explicit.
The Head[variable] tells type of entity (see nb).

10/20/2011 12.010 Lec 12 10

Basic Structure 03

– Constants: Numerical or strings, as defined by user; E, I, Pi,
and others defined by the system

– I/O
• Open and Close
• Read (various forms of this command)
• Write (again various forms)
• Print (useful for debug output)
• Can define how results are read and written.

– Math symbols: * / + - ^(power) = (immediate assignment) :=
(delayed assignment). Operations in parentheses are
executed first, then ^, /, and *. + - equal precedence.*

10/20/2011 12.010 Lec 12 11

Basic Structure 04

– Control
• If statement (various forms)
• Do statement (looping control, various forms)
• Goto (you will not use in this course)

– Termination
• Nothing special, just the last statement

– Communication between modules
• Variables passed in module calls. One form:

– Pass by value (actual value passed)
• Global variables
• Return from functions
• Contexts isolate variables of the same name (see NB). Contexts

define areas where variables are separated. Useful way to avoid
“clobbering” values in rest of program.

10/20/2011 12.010 Lec 12 12

Syntax

• Free form
– Case is not ignored in symbols and strings
– Spaces are interpreted as multiplies!
– ; at end of a line suppresses echoing of a result

• must use at end of statements in Module, except for the
last

– Comments are enclosed in (* …. *)
• Version 8 has a new free form input method in which

plain text is typed and Mathematica tries to the convert
to code. Under insert select “In-line freeform”

10/20/2011 12.010 Lec 12 13

Compiling and Linking

• Source code is created in Mathematica or a text editor.
• To compile and link: (not necessary)
• Mathematica code needs to run within Mathematica.

There is MathReader that allows notebooks to be read
without the need to buy Mathematica. (These note
books can not be changed).

• Version 8 does allow nb-to-C conversion and then
generation of stand-alone executable. We will not
explore this.

10/20/2011 12.010 Lec 12 14

Details on Functions

• Functions can be defined with the structure (see NB):
h[x_] := f(x)+g(x)
would define a new function h that is equal to function
f(x) + function g(x). These functions are symbolically
manipulated.

• Modules are invoked by defining Module and
assignment statements for functions.

• Need to be careful not to use _ in variable names.
This symbol can only be used as shown above.

10/20/2011 12.010 Lec 12 15

Subroutines (declaration)

name[v1_Type, …] := Module[{local variables}, body]

Type is optional for the arguments (passed by value)
• Invoked with

name[same list of variable types]

• Example:
sub1[i_] := Module[{s}, s = i + i^2 + i^3; Sqrt[s]]

In main program or another subroutine/function:
sum = sub1[j]

Note: Names of arguments do not need to match those
used to declare the function, just the types (if declared)
needs to match, otherwise the function is not defined. *

10/20/2011 12.010 Lec 12 16

Summary

• Introduction to Mathematica and use of notebooks.
• Since Mathematica is a self contained environment,

help is readily available.
• Use of the Mathematica Help:

– When looking at functions etc; look of examples at
the bottom this is often a good way to get an idea of
how to use the function. Eg., under numerical
computations, equation solving, NDSolve examples
of solving differential equations (Hint: Question 3 of
the homeworks, is the solution to an ordinary
differential equation)

MIT OpenCourseWare
http://ocw.mit.edu

12.010 Computational Methods of Scientific Programming
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

