
12.010 Computational Methods of
Scientific Programming

Lecturers
Thomas A Herring

Chris Hill

09/22/2011 12.010 Lec 05 2

Review of Lecture 4
• Looked at Fortran commands in more detail

– Looked at variables and constants
– IO commands:

• Open/Close
• Read/Write
• Format

– Started looking at character strings

09/22/2011 12.010 Lec 05 3

Today’s Class
• More Fortran Details

– Character strings
– Control statements

• IF statements
• DO statements

– Other command types
• Include
• Common
• Parameters
• Data statement

09/22/2011 12.010 Lec 05 4

Character strings
• Character strings in Fortran are the only variable types where you can

easily use pieces of it. (Fortran90 allows character type manipulations
with other types of variables)

• To address part of string use : separator ie., name(n:m) means
characters n through m of name

• A single character in a string is referred to as name(n:n) Note: name(n)
means the n’th string of an array of character strings.

• For all other array types in fortran there is no easy way to refer to a part
of an array. You can pass the whole array to a subroutine, or part of an
array by passing starting a some location in the array, or a single
element with array(i,j).

• Character strings can be concatenated with the // operator
• Fortran "knows" about the lengths of strings so larger strings can be

equated to smaller strings (copy is truncated) or smaller strings copied
to larger strings (copy is padded with blanks).

• When strings passed to subroutines or functions, best to declare as
character*(*) in subroutine or function.

09/22/2011 12.010 Lec 05 5

Control statements IF
• If statements: Generic form is

If (logical expression) then

 …….

Else if (logical expression) then

 …….

End if

• Logical expressions are of form.
– A.eq.B — A equals B
– .ne. not equal, .gt. Greater than, .ge. Greater than or

equal, .lt. Less than, .le. Less than or equal.
– Combined expressions can be constructed with .not.,
.and. and .or. e.g.,

if (a.eq.b .and. c.eq.d) then

09/22/2011 12.010 Lec 05 6

If statements 02
• A single executable statement can be included after the if (no

then used) e.g.
if(a.eq.b) c = d

• When logical variables are used then only the logical need appear
logical done

….

if (done) then

 Print *, ‘ Program is finished’

end if

• Code within an if statements should be indented with the
indentation increasing with each layer of if statements.

09/22/2011 12.010 Lec 05 7

Control statements DO
• The basic do construction in Fortran comes in several forms.

The two main forms are:
do j = start, end, inc

 ….

end do

do while (logical expression)

 ….

end do

• In the first form, j starts at value start and continues
incrementing by inc until j is greater than end. If inc = 1 then
it does not need to appear.

• Often a numeric label is put after the do; this label is then used to
end the loop (label in columns 1-5, statement at end should be
continue which is no-operation statement.

• If end < start and inc is positive, then the code inside the loop
is never executed (-onetrip option is available for fortran 66
compatibility)

09/22/2011 12.010 Lec 05 8

Control DO 02
• Optionally a numeric label can appear after the do in the first form

and the loop will end at the (non-format) statement with that label.
• This form is not recommended, but if used the labeled statement

should be a continue.
•j can be real or integer, but for machine independent results,

integer variables are recommended.
• The code inside the do loop should be indented.
• Loops may be nested, but may not overlap in range (latter is not

possible with recommended form).
• The index variable in the loop should never be modified nor its

value used outside of the loop.

09/22/2011 12.010 Lec 05 9

Other command types
• include — allows a block of code to be included in the source file.

Usually this code is declarations of variables for a common block
(see below) or a set of parameter statements.
include ‘file name’

• Common — allows the declaration of variables that are available
in all modules without them being explicitly passed into the
module. This declaration should be used with the include
statement. Example:
Real*8 a, b, c, d(10)

common / reals / a, b, c, d

• If placed in its own file, all modules that need any of the variables
should have the file included.

09/22/2011 12.010 Lec 05 10

Common blocks
• The label between the //s names the common and is an arbitrary

label.
• Strict Fortran: Only one type of variable should be placed in a

common block (not strongly enforced). Different labeled
commons can be used for each variable type.

• Many computer scientists do not like commons because any
module with the common included can change the value of the
variable. However, by use of include, it is easy with grep to
find all uses of the variables in a common.

• Variables in commons can be passed into modules but if the
common is included in the module, the name needs to be
changed.

09/22/2011 12.010 Lec 05 11

Parameters
• The parameter statement is a way of naming constants. Again

very useful when the include statement is used. Example:
Real*8 pi, rad_to_deg

Parameter (pi = 3.1415926535897932d0)

Parameter (rad_to_deg = 180.d0/pi)

• Notice that the parameters themselves can be included in other
parameter statements.

• Parameters are only available in modules in which they have
been declared (thus the use of include statements)

• Parameters can be used to set the dimensions of variable arrays.

09/22/2011 12.010 Lec 05 12

Data Statement
• Data statements are used to initialize variables. Strictly, variables

initialized in data statements should not be changed by any
module (however they can be changed).

• Format of a data statement is:
 Integer*4 days_in_month(12) ! Day of year number at

 ! start of each month

 ! (Valid in non-leap year)

 Data days_in_month / 0, 31, 59, 90, 120, 151,

. 181, 212, 243, 273, 304, 334 /

• Variables in common can only be in data statements in a module
type called block data.

• Exact number and type of values must appear in data statement.

09/22/2011 12.010 Lec 05 13

Save statement
• You should assume that variables local to a module will have

arbitrary values each time the module is called.
• If you want variables to retain their values, then either use a data

statement (implying their value will not change) or use a save
statement. Example
Real*8 last_count

Save last_count

• Each time the module called, last_count will retain the value
that it had at the end of the last call. The value the first time the
module is called is not known, so it should be initialized in the first
call.

09/22/2011 12.010 Lec 05 14

Exercises using FORTRAN
• Remainder of class we develop and debug fortran

programs. Programs will be written in class to
– Print "Hello World"
– Compute root-mean-square scatter (RMS) of

random numbers generated with the intrinsic rand
function

• Students with laptops might want to bring them along
so that can work on their own system or on athena.
There is wireless internet in the room.

09/22/2011 12.010 Lec 05 15

Summary of Today’s class
• Fortran Details

– Covered other commands in Fortran:
– Control statements

• IF statements
• DO statements

– Other command types
• Include
• Common
• Parameters
• Data statement

• For the remainder of the class; examine, compile and run the
poly_area.f and test programs: loops.f, ifs.f, inout.f and subs.f

• vars.f is a special examples program.
• Try modifications of these programs and see what happens.

http://geoweb.mit.edu/~tah/12.010/poly_area.f
http://geoweb.mit.edu/~tah/12.010/vars.f
http://geoweb.mit.edu/~tah/12.010/loops.f
http://geoweb.mit.edu/~tah/12.010/ifs.f
http://geoweb.mit.edu/~tah/12.010/inout.f
http://geoweb.mit.edu/~tah/12.010/subs.f

09/22/2011 12.010 Lec 05 16

Exercises using FORTRAN
• In this exercise session we will write some simple FORTRAN

programs:
– Write a simple program that writes your name to the screen
– Compile and load the poly_area.f program from the web page.

Test the program to see how it works
– Compile and run the other programs from the web page.
– Compile and load the vars.f routine from the web page. Test

the following modifications to the program:
• In the first call to var_sub_01, replace j with an integer constant

and see what happens
• To run fortran:

gfortran <options> <source files> -o <program name>
e.g. gfortran poly_area.f -o poly_area

MIT OpenCourseWare
http://ocw.mit.edu

12.010 Computational Methods of Scientific Programming
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

