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1 Short-term evolution of atmospheric CO2

We have spoken of volcanism as the long-term source of CO2. 

Among the other sources, the respiration flux is about 3 orders of magnitude 
greater than volcanism, and fossil-fuel combustion is about one and one-half 
orders of magnitude greater. 

Whatever the source, we consider the following questions: 
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• How can we identify the source?  

• How long does CO2 stay in the atmosphere? 

We shall answer these questions in a precise way that pertains to short, 
roughly decadal, time scales. 

We first consider the growth of atmospheric CO2 since the mid-20th century. 

1.1 The Keeling curve 

Atmospheric CO2 concentrations have been measured monthly at Mauna Loa 
Observatory, Hawaii, since 1958. 

The measurements, begun by C. David Keeling, report CO2 concentration as 
a dry mole fraction: the number of molecules of carbon dioxide divided by 
the number of molecules of dry air multiplied by one million (ppm). 

The resulting plot is known as the Keeling curve: 

Data from P. Tans, NOAA/ESRL (www.esrl.noaa.gov/gmd/ccgg/trends/). 

Studies of CO2 in ice cores show that this increase is the latest chapter in 
process that started about 200 years ago: 
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Data from the Law Dome ice core, Antarctica [1].  

An obvious question arises: Why is CO2 increasing?  

To provide a precise answer, we first digress to a discussion of carbon isotopes.  

1.2 Carbon isotopes 

1.2.1 Natural abundance 

Reference: Emerson and Hedges [2]. 

Every atom of carbon has Z = 6 protons. Z is the atomic number. 

When there is no net charge, each atom of C has 6 electrons. 

However the mass number A varies: 
A = 12, 13, or 14. 

The variation in mass number derives from the variations in the neutron 
number 

N = A − Z. 
Each isotope of carbon corresponds to a specific neutron number N , and 
therefore mass number A. These are named according to their mass number: 

carbon-12, carbon-13, carbon-14,  
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and are generally written symbolically as  
12C, 13C, 14C. 

14C is radioactive, and 12C and 13C are stable. 

About 98.9% of Earth’s carbon is 12C and nearly all the rest is 13C; thus 
13C ∼ 10−2 ,
C 

where the denominator represents the sum of all carbon. 14C is much less 
abundant: 

14C 
< 10−12 . 

C 
14C is naturally produced in the upper atmosphere by cosmic rays, which can 
shatter a nucleus (N or O), releasing neutrons, some of which are absorbed 
by 14N such that 

14 − 
7N+ n0 →14

6 C + p+ + e . 
Thus 14N is converted to 14C, releasing a proton and an electron. 

1.2.2 Radioactive decay 

14C, being unstable, converts back to 14N. 

To understand the rate at which such radioactive decay occurs, we consider 
briefly the following general model. 

Consider the reaction 
k

A      Products, 

signifying the disappearance or extinction of A with rate constant k. 

The meaning of the rate constant k is that, in a small interval of time Δt < 
k−1 , 

Probability(an arbitrary atom decays) r kΔt. 
This probability applies to each atom independently, meaning that, whatever 
the quantity of A, a fraction kΔt of A reacts in an interval Δt. 
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Thus if we have N atoms of A at time t, after a small time Δt, we have  

N(t +Δt) = N(t) − kΔtN(t) 

and therefore 
N(t +Δt) − N(t) 

= −kN. 
Δt 

Letting Δt → dt, we have the first-order decay 

dN 
= −kN 

dt 
with solution 

N(t) = N(0)e −kt . 

The above development essentially defines a first-order decay process. 

Its application to radioactive decay requires merely the assumption that each 
atom decays with the same constant probability. 

For 14C, the rate constant 
1 

k = . 
8267 yr 

The half-life t1/2 is the time it takes for one-half of A to decay. Thus 

1 ln 2 −kt1/2= e ⇒ t1/2 = 
2 k 

For 14C, 
t1/2 = 5730 yr. 

1.2.3 Notation 

Reference: Emerson and Hedges [2].  

Geochemists use a very special notation for isotopic abundance.  

The first component of the notation is the abundance ratio  
nC 

Rn = 
12C 
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where n = 13 or 14.  

Geochemists then compare the R obtained on a given sample to R obtained 
for a “standard” sample. Noting the latter ratio as Rstd, they define the 
isotopic composition 

Rn − Rstd
δnC = × 1000. 

Rstd 

The factor of 1000 is included because the factor in parentheses is often of 
order 10−2–10−3, so that when multiplied by 1000 it becomes of order 1–10. 
One then speaks of δ in units of “per mil”, which is equivalent to “parts per 
thousand,” and is written with the symbol o, not to be confused with the 
per cent sign % (parts per hundred). 

Analyses of 14C contain even greater notational complexity. 

The problem arises from the frequent desire to compare a particular mea
surement of δ14C (say, of atmospheric CO2), to the value of δ14C that would 
be obtained in the absence of anthropogenic perturbation. 

Consequently geochemists define the following “cap delta” notation: 

δ14CΔ14C = δ14C − 
0 

The second term on the RHS is too complicated to discuss here, but it has the 
property that if δ14C is measured from wood formed in 1850, then Δ14C = 0. 

The point is that Δ14C = 0 represents a “typical” value that represents a 
balance between atmospheric 14C production and decay. 

1.3 The origin of the recent CO2 rise 

CO2 levels undergo natural fluctuations. Thus it is appropriate to ask whether 
the recent rise in CO2 levels are the result of natural changes rather than the 
burning of fossil fuels. 

We can use the 14C content of the atmosphere to help answer this question. 
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The figure below shows the 14C composition of tree rings associated with the 
period 1820–1954 [3]. 

Over the last 50 years, Δ14C decreases by about 20o. 

Over such a time period, natural variations in the cosmic ray flux should 
produce changes no greater than that of experimental error (a few per mil). 

The combustion of fossil fuels, on the other hand, should create such a de
crease, because the fuels, being derived from geologically ancient organic 
matter, are entirely free of 14C. 

Thus the 14C content of the atmosphere is diluted by the burning of fossil 
fuels, so that Δ14C declines. 

This phenomenon, known as the Suess effect, is one way to trace the source 
of the recent CO2 rise to human activities. 

1.4 The bomb spike 

14C can also be used to address the short-term residence time of atmospheric 
CO2. 

Nuclear weapons tests in the 1950s and early 1960s produced large amounts 
of 14C in the atmosphere. 

The tests were essentially ended by the Nuclear Test Ban Treaty in October 
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1963.  

Measurements of atmospheric 14C show the build-up followed by a decay [4]: 
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The decrease is far too fast to be associated with radioactive decay. 

A log-linear plot shows that the decay is nevertheless exponential, dropping 
off like 

−t/τe , τ r 17.4 yr. 
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The decay is mostly due to “uptake” of 14C in the oceans, in large part by 
diffusion. 

1.5 Microscopic model of molecular diffusion 

Reference: Berg [5]. 
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To gain some physical insight, we first consider a microscopic model of diffu
sion. 

1.5.1 One-dimensional random walk 

Consider a (drunkard’s) random walk along a line: 

• Start at time t = 0 and position x = 0.

• Every τ seconds, take a random step s to the left or right.

• Assume equiprobable steps of equal size δ:

P (s = δ) = P (s = −δ) = 1/2.  

• No memory (statistically independent jumps).

We think of this as a caricature of real diffusion (e.g., Brownian motion). 

Now consider an ensemble of N independent random walks (i.e., many such 
drunkards, each acting with no awareness of the others). 

Let xi(n) be the position of the ith walker after n steps. Then 

xi(n) = xi(n − 1) + s. 

The mean position of a large ensemble of walkers after n steps is 

NN 
(x(n)) = lim 

1 
xi(n − 1) + s 

N→∞ N 
i=1 

= (x(n − 1)) + (s) 
= (x(n − 1)). 
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Here we have used the angle brackets (·) to denote the ensemble average. 
The result shows that the mean position is independent of n, thus retaining 
permanent memory of the initial condition: 

(x(n)) = 0. 

Intuitively we understand that there should nevertheless be a wide spread in 
the probability P (x) that increases with time: 

( )1/2 
We characterize this spread by the root-mean-square displacement x2(n) . 
To calculate it, first write   22 xi (n) = xi(n − 1) + s

2 2 = xi (n − 1) + 2sxi(n − 1) + s . 

Because the mean of a sum of random variables is the sum of the means, the 
mean-square displacement in the ensemble is ( ) ( ) ( )

2x 2(n) = x 2(n − 1) + 2 (s x(n − 1)) + s( ) ( ) 
2 = x 2(n − 1) + 2(s) (x(n − 1)) + s( ) 

= x 2(n − 1) + δ2 . 

In the second relation, we have replaced the average of a product with the 
product of averages because s is uncorrelated to x. (This also may be deduced 
from the observation that the walk contains no memory of past steps.) 

Note that our result is in the form of a recursion, which is readily put in the 
simpler form ( ) 

x 2(n) = nδ2 
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Since t = nτ , we have ( )
2x = δ2t/τ = 2Dt, 

where we have defined the diffusion coefficient 

δ2 
D = . 

2τ 
Thus the mean-squared displacement increases linearly with time, like 2Dt. 
Consequently the root-mean-square displacement increases like the square-
root of time: ( )1/22x = (2Dt)1/2 . 

Intuitively we understand that the width of a bell-shaped distribution P (x, t)√ 
increases like 2Dt. 

Indeed, in the plot above, ( )1/2 
x 2 = 1, 2, and 4 

corresponding to times t such that 

2Dt = 1, 4, and 16. 

For a small molecule in water, D r 10−5 cm2/s. So imagine you’re a bac
terium (size ∼ 10−4 cm), and you want to know how long some molecular 
nutrient will take to diffuse a distance R away from you. Identifying R with( )1/2 
x2 , the diffusion time τd is 

τd ∼ R2/2D. 

Consider two particular cases: 

R (cm) τd (s) 
10−4 5 × 10−4 

1 5 × 104 

In other words, the molecule would stay within a length commensurate to a 
bug’s size for only about a millisecond. But it would stay within 1 cm for 
about 14 hours! 
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This huge change is a consequence of the quadratic scaling τd ∝ R2, a hallmark 
of diffusive processes. 

In contrast, for a simple advective flow times scale linearly with distance. 

1.5.2 Higher dimensions 

Before moving on, we first argue that our little toy problem is equally valid 
in higher dimensions. 

In, say, two dimensions, the random walker is on a plane. In our discrete 
approximation, this corresponds to a lattice with a “Manhattan metric,” with 
the drunkard originating at his corner bar and moving ±δ in each dimension 
at each time step. 

Because the drunk’s motion in x is independent of his motion in y, ( ) ( )
2 2x = y = 2Dt 

Since the mean-square distance from the origin is 

2 2 2 r = x + y , 

we have ( )
2r = 4Dt. 

The generalization to higher dimensions is obvious. The point is that we 
retain the diffusive scaling R2 ∝ t. 

1.5.3 Macrodynamics: the diffusion equation 

We now proceed to derive the diffusion equation from our random walk. 

Suppose we have a long tube of cross-section A in which particles undergo 
random walks. We are interested in N(x), the number of particles at x (i.e., 
between x − δ/2 and x + δ/2), along with the particle flux Jx. 

12  



� �

� �

How many particles pass through a unit area in unit time, from x to x + δ? 
And in the other direction? 

In other words, what is the net flux Jx? 

We imagine a boundary between x and x + δ. During one time step τ , half 
the particles at x cross over to the right, and half the particles at x + δ cross 
over to left. 

The net flux (number particles per unit area per unit time) is 

N(x) N(x + δ) 1 
Jx = − 

2 2 Aτ 

where the factor of 1/2 comes from the fact that half the particles at each 
location move away from the boundary rather than towards it. 

Rearranging and multiplying by δ2/δ2 , 

δ2 1 N(x + δ) N(x)
Jx = − − 

2τ δ Aδ Aδ 

Defining the number density or concentration C = N/Aδ and recalling D = 
δ2/2τ , we have 

C(x + δ) − C(x)
Jx = −D . 

δ 
Letting δ → 0, we obtain 

∂C 
Jx = −D . 

∂x 
This is Fick’s (first) law: the concentration flux goes down the concentration 
gradient, at a rate given by the diffusivity D. 

Fick’s law is an example of a “linear-response relation.” Others include Ohm’s 
law and Hooke’s law. The linearity is essentially an assumption, which follows 
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in our case from assuming that the two sides of the boundary through which 
particles flow act independently of one another. 

Now consider particles flowing into and out of a box with cross-sectional area 
A perpendicular to and width δ parallel to the x-axis. 

The concentration C(t) inside the box changes with the net flux into it. 

In τ units of time the concentration changes as 

Aτ 
C(t + τ) − C(t) = Jx(x) − Jx(x + δ) 

Aδ 
The factor of Aτ converts the concentration flux to the number of particles 
flowing through the face, and the factor of 1/Aδ converts that number to a 
concentration. Simplifying, we obtain 

1 1 
C(t + τ) − C(t) = − Jx(x + δ) − Jx(x) . 

τ δ 
Letting τ → 0 and δ → 0, we obtain 

∂C ∂Jx 
= − 

∂t ∂x 
Substituting Fick’s first law for Jx then yields the diffusion equation: 

∂C ∂2C 
= D . 

∂t ∂x2 

These developments can be derived succinctly by an alternative approach. 
Let 

Pn(i) = probability that a random walker is at site i after n steps. 
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Since steps to the left and right occur with equal probability, we have 

1 1 
Pn(i) = Pn−1(i + 1) + Pn−1(i − 1)

2 2 
Now set 

t = nτ and x = iδ 

and consider the probability to be spread over an interval of size δ so that 

Pn(i) = δ · p(x, t). 

Then 
1 1 

p(x, t) = p(x + δ, t − τ) + p(x − δ, t − τ). 
2 2

Multiplying both sides by 1/τ and rearranging, we have 

1 δ2 1 
[p(x, t) − p(x, t − τ )] = · [p(x + δ, t − τ) − 2p(x, t − τ) + p(x − δ, t − τ )]

τ 2τ δ2 

We recognize the LHS as a finite difference in time and the RHS as a finite 
difference of finite differences in space. 

Thus in the limit as τ → 0 and δ → 0, we have 

∂p ∂2p δ2 
= D , D = 

∂t ∂x2 2τ 
expressing the diffusion of probability. 

Reverting back to the concentration C, note that in higher dimensions, Fick’s 
first law is 

JJ = −D\C 

and mass conservation yields 

∂C J= −\ · J. 
∂t 

Combining the two, we have 

∂C 
= D\2C, 

∂t 
which may be straightforwardly obtained by generalization of our random 
walk to higher dimensions. 
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Note that our expression of the diffusion equation is precisely the same as 
the heat equation we derived purely by continuum arguments in an earlier 
lecture. 

By rederiving the diffusion equation via a random walk, however, we have 
exposed the connection of diffusion to random motion. 

One might wonder if the explicit microdynamics matter. For example, do 
things change if there is a distribution of step sizes, or waiting times? 

A more detailed analysis shows that only the coefficient D changes, not the 
diffusion equation itself, provided that the step size and waiting time distri
butions are not too wide. 

Conclusion: The simplest possible random walks are solutions to the diffusion 
equation. Consequently: 

• We can think about diffusive processes as random walks.

• We can equally think about random walks as diffusive.

1.6 Relaxation to equilibrium 

As an elementary application of what we have just learned, suppose that we 
have two well mixed (e.g.., stirred) reservoirs of gas separated by permeable 
walls a distance δ apart from one another. 

We assume that the concentration of CO2 in reservoir 2 is held fixed at c2, 
and that the concentration c1 in the first reservoir initially differs from c2. 
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In other words, we require that reservoir 1 equilibrate with reservoir 2, and 
take reservoir 2 to be so large compared with reservoir 1 that any changes to 
its concentration are negligible. 

The characteristic time τ for a molecule of CO2 to diffuse from one permeable 
boundary to the other is 

τ = δ2/D, 

where D is the diffusion coefficient. 

We assume that the time taken to pass through a permeable wall is much less 
than τ . Consequently δ is the thickness of a diffusive boundary layer between 
the two reservoirs. 

Clearly CO2 diffuses so that c1 → c2. How, then, does c1 evolve with time? 

The flux J through the boundary layer, from reservoir 1 to 2, is obtained 
from Fick’s law: 

c2 − c1
J = −D . 

δ 
J has dimensions 

L2 1 M M 
[J ] = = ,

T LL3 L2T 
i.e., mass per unit time per unit area. 

Letting A represent the area of the boundary between reservoir 1 and 2 and 
V1 be the (constant) volume of reservoir 1, we have 

dc1 DA 
V1 = −JA = (c2 − c1),

dt δ 

Defining 
c̃ = c1 − c2, 

we have 
dc̃ DA 

= − c.̃
dt V1δ 

which has the solution 
−t/τc̃(t) = c̃(0)e 
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where the time constant 
V1δ 

τ = . (1)
DA 

This simple exponential decay is a characteristic of physical problems defined 
by a single time scale and a linear response relation. 

1.7 Air-sea transfer and the decay constant 

Reference: Broecker and Peng [6]. 

We return now to the problem of the decay of the bomb spike. 

In essence, we apply the model of the previous section, where reservoir 1 is 
the atmosphere and reservoir 2 is the ocean. 

The key idea is that the transfer from air to sea occurs through a thin layer 
of water, of thickness δ. 

Above this layer, the atmosphere is considered well mixed, with a constant 
concentration of 14C. 

Below the layer, the ocean is also considered well mixed.  

Within the layer, there is a diffusion gradient—thus we say that absorption  
into the ocean is diffusion-limited.  

This model of air-sea transfer is known as the stagnant film model.  
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The central problem is to determine the effective thickness δ of the diffusive 
boundary layer. 

1.7.1 Thin-film model 

To determine δ, we make use of the following: 

•	 14C is created in the atmosphere. 

•	 The typical residence time of CO2 in the atmosphere is much shorter 
than the radiocarbon decay constant (k−1 = 8267 yr.) 

•	 Nearly all of the decay of 14C takes place in the oceans. 

Thus the atmosphere is the source, and the oceans a sink. 

We therefore expect that, prior to the bomb spike, a steady state in which the 
production of 14C in the atmosphere is balanced by its decay in the oceans. 

Then the differences in the concentration of 14C in the oceans and atmosphere 
would be due to a balance between 14C absorbed into the oceans at the rate 
given by 

gas transfer velocity = D/δ 

and the 14C “destroyed” in the oceans at the decay time scale k−1 . 

The flux per unit area of 14C into the oceans is again given by 

D 
J = − (c2 − c1)

δ 
where now 

c1 = concentration of 14CO2 in the water at the air-sea interface 
c2 = 14CO2 concentration just below diffusive layer, in the “mixed” layer. 

The total input flux is then 

14C input = JA, 
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where A is the area of the air-sea interface.  

The decay of 14C in the oceans, on the other hand, is given by 
14C decay = kcoVo 

where co is the average radiocarbon concentration in the whole ocean (essen
tially the deep ocean), and Vo is the volume of the oceans. 

Balancing the input with the decay, we have 
DA 

(c1 − c2) = kcoVo
δ 

and therefore the effective thickness of the stagnant film is 

δ = 
DA c1 − c2 

kVo co 

The ratio 
Vo/A = mean ocean depth r 3800 m. 

Analyses of radiocarbon in the atmosphere and oceans provide the pre
industrial, pre-bomb concentration ratio 

c1 − c2 r 2.8 × 10−4 . 
co 

The diffusivity of CO2 gas in water is about 

D r 5 × 10−2 m 2/yr. 

We thus find the effective thin film thickness 

δ = 30 µm 

and the gas transfer velocity 

D/δ = 1800 m/yr r 20 cm/hr. 

1.7.2 Decay constant of the bomb spike 

We now apply the simplified model of decay of Section 1.6. There we pre
dicted the decay time constant 

V1/A 
τ = . 

D/δ 
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Here we have  
V1 

= equivalent height of atmosphere r 8500 m 
A 

where “equivalent height” means the height that the atmosphere would have 
if the atmospheric pressure everywhere were the same as at sea level. 

Then 
τ r 4.7 yr. 

Given the simplicity of the models, this prediction compares reasonably well 
to the time constant of 17.4 yr measured from the decay of the bomb spike 
in Section 1.4. 

Since most of the 14C uptake should be in the oceans, this result suggests 
that the predicted uptake is about 4 times faster than the observed uptake. 

There are many possible sources of error. Some possibilities: 

•	 The “well-mixed” assumption, which derives from an assumption about 
turbulence, does not account for the effectively thicker films due to wave 
action. 

•	 The ocean is not a perfect sink for 14C. 

1.7.3 Relation to the residence time of atmospheric CO2 

In reality, the uptake of CO2 into the oceans, land, and ultimately rocks 
occurs at many time scales, some as long as 100 Kyr. 

Here we have addressed only the fastest of these time scales, as it manifests 
itself (roughly) in the decay of the bomb spike. 

In this case, we merely observe the absorption into the oceans of a kind of 
passive tracer. 

However, when CO2 is injected into the atmosphere (rather than “labeling” 
a particular kind of CO2 as 14CO2), CO2 levels in the oceans rise in response. 
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There is then an intermediate time scale, longer than that studied here, but 
shorter than the 100 Kyr time scale of the rock cycle, wherein the atmosphere 
equilibrates not back to its original CO2 concentration, but that which brings 
it into equilibrium with the change in the oceans. 

Indeed, models suggest that 20-35% of the increase in atmospheric CO2 re
mains in the atmosphere at a time scale of 200–2000 yr [7, 8]. 

References 

[1] MacFarling Meure, C. et al. Law Dome CO2, CH4 and N2O ice core records 
extended to 2000 years BP. Geophysical Research Letters 33 (2006). 

[2] Emerson, S. R. & Hedges, J. I.	 Chemical Oceanography and the Marine 
Carbon Cycle (Cambridge, New York, 2008). 

[3] Stuiver, M. & Quay, P. Atmospheric C14 changes resulting from fossil-fuel 
CO2 release and cosmic-ray flux variability. Earth and Planetary Science 
Letters 53, 349–362 (1981). 

[4] Currie, K. I. et al. Tropospheric 14CO2 at Wellington, New Zealand: the 
worlds longest record. Biogeochemistry (2009). doi:10.1007/s10533-009
9352-6. 

[5] Berg,	 H. C. Random Walks in Biology (Princeton University Press, 
Princeton, 1993). 

[6] Broecker, W. & Peng, T. Gas-exchange rates between air and sea.	 Tellus 
26, 21–35 (1974). 

[7] Archer, D.	 The Long Thaw (Princeton University Press, Princeton, N.J., 
2009). 

[8] Archer, D. et al. Atmospheric lifetime of fossil fuel carbon dioxide. Annual 
Review of Earth and Planetary Sciences 37, 117–134 (2009). 

22  



MIT OpenCourseWare
http://ocw.mit.edu

12.009J / 18.352J Theoretical Environmental Analysis
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Short-term evolution of atmospheric CO2
	The Keeling curve
	Carbon isotopes
	Natural abundance
	Radioactive decay
	Notation

	The origin of the recent CO2 rise
	The bomb spike
	Microscopic model of molecular diffusion
	One-dimensional random walk
	Higher dimensions
	Macrodynamics: the diffusion equation

	Relaxation to equilibrium
	Air-sea transfer and the decay constant
	Thin-film model
	Decay constant of the bomb spike
	Relation to the residence time of atmospheric CO2





