Lab 3 - Geochronology

Part 1: Introduction to geochronology

1. Radioactive decay.
a. Fill in the table below, which is based on the decay of ${ }^{238}$ U (half-life $=4.47 \mathrm{Gyr}$) to ${ }^{206} \mathrm{~Pb}$, and use the information to generate plots of the abundance of parent and daughter isotopes and the ratio of daughter/parent through time.

$\mathbf{t}_{1 / 2}$ (number of half-lives passed)	0	1	2	3	4	5
Percentage of parent-isotope atoms left	100	50				
Number of parent-isotope atoms left	128					
Number of radiogenic daughter-isotope atoms	0					
$\mathbf{n}_{\mathbf{d}} / \mathbf{n}_{\mathbf{p}}$ (ratio of daughter:parent isotope atoms)	0					
Time since formation (Ga)	0	4.47	8.94	13.40	17.87	22.34

Based on the previous plots, what is the essential piece of information required to date a sample?

At what time in Earth's history (roughly, estimate a range) is the ${ }^{238} \mathrm{U}-{ }^{206} \mathrm{~Pb}$ system most sensitive/accurate?

Part 2. Application: dating volcanic rocks

Sample A

Sample is a volcanic ash that is stratigraphically just below the K-T boundary.
Pb analysis determined that there are $1,242{ }^{206} \mathrm{~Pb}$ atoms.
U analysis determined that there are $120,543{ }^{238} \mathrm{U}$ atoms.

1. What is the age of your sample? Use this graph to help you:

2. You've determined that the uncertainty in your ratio determination is 0.03%. What is the uncertainty in your age?

Sample B

Sample is a volcanic ash from just above the K-T boundary.
Pb analysis determined that there are $1,417{ }^{206} \mathrm{~Pb}$ atoms.
U analysis determined that there are $137,570{ }^{238} \mathrm{U}$ atoms.

1. What is the age of your sample?
2. You've determined that the uncertainty in your ratio determination is 0.045%. What is the uncertainty in your age
3. Estimate the timing of the K-T extinction. Give an uncertainty for your age.

Sample C

Sample is some impact material from the meteorite impact crater near the Yucatan Peninsula, Mexico.
Pb analysis determined that there are $1,360{ }^{206} \mathrm{~Pb}$ atoms.
U analysis determined that there are $132,156{ }^{238} \mathrm{U}$ atoms.

1. What is the age of your sample?
2. You've determined that the uncertainty in your ratio determination is 0.15%. What is the uncertainty in your age?

Sample D

Your sample is from the Deccan Traps, a huge series of lava flows in India.
Your Pb analysis determined that there are $1,500{ }^{206} \mathrm{~Pb}$ atoms.
Your U analysis determined that there are 146,654 ${ }^{238} \mathrm{U}$ atoms.

1. What is the age of your sample?
2. You've determined that the uncertainty in your ratio determination is 0.92%, or 0.00009 . What is the uncertainty in your age?

Based on this geochronologic data, what conclusions can you draw about the fate of the dinosaurs?

Extra credit: the reliability of radiometric dating depends on us knowing how much of a radioactive isotope has decayed to its daughter product. In this lab we have established what is required to date a sample, but what are some potential problems that might come up in this endeavor?

MIT OpenCourseWare
http://ocw.mit.edu
12.001 Introduction to Geology

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

