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Outline

1. Introduction to Mechanics of Materials
Basic concepts of mechanics, stress and strain, deformation, strength and 
fracture
Monday Jan 8, 09-10:30am

2. Introduction to Classical Molecular Dynamics
Introduction into the molecular dynamics simulation; numerical techniques
Tuesday Jan 9, 09-10:30am

3. Mechanics of Ductile Materials
Dislocations; crystal structures; deformation of metals 
Tuesday Jan 16, 09-10:30am

4. The Cauchy-Born rule
Calculation of elastic properties of atomic lattices
Friday Jan 19, 09-10:30am

5. Dynamic Fracture of Brittle Materials
Nonlinear elasticity in dynamic fracture, geometric confinement, interfaces
Wednesday Jan 17, 09-10:30am

6. Mechanics of biological materials
Monday Jan. 22, 09-10:30am

7. Introduction to The Problem Set
Atomistic modeling of fracture of a nanocrystal of copper. 
Wednesday Jan 22, 09-10:30am

8. Size Effects in Deformation of Materials
Size effects in deformation of materials: Is smaller stronger?
Friday Jan 26, 09-10:30am
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Outline and content (Lecture 5)

Topic: Fracture mechanisms in ductile and brittle materials.

Examples: Large-scale simulation of a copper nanocrystal – analysis 
of dislocation mechanisms

Material covered: Metallic bonding, EAM potentials, energy approach 
to elasticity, Cauchy-Borne rule;  basics in fracture mechanics –
prediction of dislocation nucleation and crack extension

Important lesson: Dislocation as fundamental carrier of plasticity, 
driving force for fracture processes, competition between ductile and 
brittle processes

Historical perspective: Origin of Griffith’s fracture theory 



Ductile versus brittle materials


BRITTLE DUCTILE 

Glass Polymers 
Ice... 

Shear load 

Copper, Gold 

© 2006 Markus J. Buehler, CEE/MIT 

Figure by MIT OCW. 
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Derivation stress field around crack tip

See lecture notes
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Figure by MIT OCW.
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EQ eq.

Compat. cond.

Airy stress function: Ansatz

Asymptotic stress field
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Stress field around a (static) crack

Hoop or opening stress

Maximum principal stress
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Ductile materials are governed by the 

motion of dislocations: Introduction
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Figure by MIT OCW. 

Dislocations are the discrete entities that carry plastic (permanent) 

deformation; measured by “Burgers vector”


http://www.people.virginia.edu/~lz2n/mse209/Chapter7.pdf © 2006 Markus J. Buehler, CEE/MIT 
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Partial dislocations

In FCC, dislocations with Burgers vector [110] split up into two
“partial dislocations” with Burgers vector 1/6[112]

http://www.tf.uni-kiel.de/matwis/amat/def_en/kap_5/backbone/r5_4_2.html

Metals with low SFE 
and materials under 
geometric 
confinement often 
have large stacking 
faultsImage removed due to copyright restrictions.

See the first image on this page:
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Partial dislocations

Stacking fault:  Long range atomic order distorted HCP vs. FCC

B
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Figure by MIT OCW.
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Dislocation nucleation from a crack tip

• Critical load for cracking
• What happens when the load becomes large?
• How to analyze the complex data?
• Limitations of modeling…

Figure by MIT OCW.

Copper
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Atomistic details of dislocation nucleation

• Dislocation nucleation from a traction-free grain boundary in an ultra thin 
copper film

• Atomistic results depict mechanism of nucleation of partial dislocation

Figure removed for copyright reasons.
Source:  Figure 16 in Buehler, Markus J., Balk, John, 
Arzt, Eduard, and Gao, Huajian.  "Constrained Grain 
Boundary Diffusion in Thin Copper Films."  Chapter 13 
in Handbook of Theoretical and Computational 
Nanotechnology. Edited by Michael Rieth and Wolfram 
Schommers. Stevenson Ranch, CA: American 
Scientific Publishers, 2006.
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Chemical bonding in metals
“metallic bonding”

Bonding between atoms with low electronegativity 1,2 or 3 valence 
electrons, therefore there are many vacancies in valence shell.
When electron clouds overlap, electrons can move into electron cloud of 
adjoining atoms.
Each atom becomes surrounded by a number of others in a three-
dimensional lattice, where valence electrons move freely from one valence 
shell to another.
Delocalized valence electrons moving between nuclei generate a binding 
force to hold the atoms together

Thus:
Electron gas model 
Mostly non-directional bonding, but the bond strength indeed depends on 
the environment of an atom, precisely the electron density imposed by 
other atoms

positive ions in a sea of electrons 

+ + + + + +

+ + + + + +

+ + + + + +

+

Electron (q=-1)

Ion core (q=+N)
+ +

+ +

+ +
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Properties of metals

Reflection of light by electron gasLustrous 

Tightly packed FCC, BCC, HCPHigh density 

Physical/atomic reasonProperty 

Glide (and climb) of dislocationsMany metals are ductile

Delocalized electrons 
(flow in and out)Good electrical conductors

Vibration transport via delocalized 
electrons (+phonons)Good conductors of heat

Strong forces between ion core and 
delocalized electronsHigh melting temperature
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Why pair potentials fail…

In pair potentials, the strength of each bond is dependent only 
on the distance between the two atoms involved: 
The positions of all the other atoms are not relevant 
(works well e.g. for Ar where no electrons are available for bonding and atoms are 
attracted with each other only through the weak van der Waals forces)
However:  QM tells that the strength of the bond between two 
atoms is affected by the environment (other atoms in the 
proximity)
As a site becomes more crowded, the bond strength will 
generally decrease as a result of Pauli repulsion between 
electrons. 
The modeling of many important physical and chemical 
properties depends crucially on the ability of the potential to 
"adapt to the environment" 

Can not reproduce surface relaxation (change in electron 
density)

http://www.fisica.uniud.it/~ercolessi/forcematching.html
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Modeling attempts:  Pair potential

First attempts using pair potentials
∑
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Numerical implementation of neighbor search:
Reduction of N2 problem to N problem

• Need nested loop to search for neighbors of atom i:  Computational disaster

• Concept:  Divide into computational cells (“bins”, “containers”, etc.)

• Cell radius R>Rcut (cutoff)

• Search for neighbors within cell atom 
belongs to and neighboring cells 
(8+1 in 2D)

• Most classical MD potentials/force fields 
have finite range interactions

• Other approaches:  Neighbor lists

• Bin re-distribution only necessary every 
20..30 integration steps (parameter)



© 2007 Markus J. Buehler, CEE/MIT

Modeling attempts:  Multi-body potential

Multi-body potential depend on more than pairs of atoms, but instead 
also on the environment of each atom
Important for metals due to existence of “electron gas”
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Numerical implementation of 
multi-body EAM potential

Requires two loops over atoms within each cell

Loop 1:

(i) Pair contributions (derivatives 
and potential)

(ii) Calculate electron density

Loop 2:

(iii) Calculate embedding function 
and derivatives

Due to additional (i) calculation of electron density and (ii) 
embedding contribution EAM potentials are 2-3 times slower than 
pure pair potentials

O O
r



Stacking fault energy: LJ potential vs. 

EAM potential
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Consequence: Only partial dislocations expected 

Figure by MIT OCW.  After Buehler and Gao, "Ultra large scale atomistic simulations of dynamic fracture," 2006.
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Separation of partial dislocations

Width of stacking fault
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Deformation of metals:  Example

http://www.kuleuven.ac.be/bwk/materials/Teaching/master/wg02/l0310.htm

Image removed for copyright reasons.
See:  Fig. 4 at 
http://www.kuleuven.ac.be/bwk/materials/Teaching/mas
ter/wg02/l0310.htm.

Image removed for copyright reasons.
See:  Fig. 6 at 
http://www.kuleuven.ac.be/bwk/materials/Teaching/mas
ter/wg02/l0310.htm.
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Strengthening mechanisms 

????

Figure by MIT OCW.
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Strengthening mechanisms 

Remember:  Theoretical shear strength of materials is not reached due to 
the existence of dislocations
By hindering the motion or the possibility to create dislocations, the material 
becomes stronger, approaching the theoretical strength
Mechanisms:

Grain boundary strengthening Images removed due to copyright restrictions.

Grain size reduction

Introduction of foreign atoms that create strain field (solid-solution 
strengthening)

Introduction of particles that pin/hinder 
dislocation motion 

http://www.people.virginia.edu/~lz2n/mse209/Chapter7.pdf
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Need: Large system size to generate large 
number of dislocations

Micrometer range of dislocation-dislocation interactions
Thus: Need crystal with 100..200 nm side length – 1E9 
atoms

Image removed for copyright reasons.
See:  Fig. 4 at 
http://www.kuleuven.ac.be/bwk/materials/Teaching/mas
ter/wg02/l0310.htm.

Figure by MIT OCW.  After Buehler et al, 2005.
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Simulation details

1,000,000,000 atom 

Lennard-Jones ductile “model 
material”

φ

r

Generic
features of 
atomic
bonding: 
„repulsion vs. 
attraction“

Analysis of a one-billion atom simulation 
of work-hardening
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Figure by MIT OCW.  After Buehler et al, 2005.Figure by MIT OCW.  After Buehler et al, 2005.



Increase in computing power

Classical molecular dynamics
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"Teraflop" 

1965 1975 1985 1995 2005 2012 
Year 

Computer power 
BlueGene USA 70 TFLOP 
NASA Ames USA 50 TFLOP 
Earth Simulator Japan 40 TFLOP 
LINUX Clusters 

IBM Almaden Spark 

"Gigaflop" 

"Petaflop" computers 

Figure by MIT OCW. 

(Buehler et al., to appear 2006) 



Parallel Molecular Dynamics


Figure by MIT OCW. 

(after Schiotz) 

Concept:


Divide the workload


No (immediate) long range 

interaction (only via dynamics)


• Each CPU is responsible for 
part of the problem 

• Atoms can move into other 
CPUs (migration) 

• Need to know topology or 
the geometric environment on 
other CPUs (green region) 

• 1,000,000,000 particles on 
1,000 CPUs: Only 1,000,000 
atoms/CPU 
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Implementation of parallelization

Shared memory systems (all CPUs “see” same memory)
OpenMP (easy to implement, allows incremental parallelization)
POSIX threads

Distributed memory systems
MPI (=Message Passing Interface)
Most widely accepted and used, very portable, but need to parallelize 
whole code at once

Parallelization can be very tedious and time-consuming and may distract 
from solving the actual problem; debugging difficult

Challenges: Load balancing, different platforms, input/output, compilers 
and libraries, modifications and updates to codes, “think parallel” as 
manager

Strategy for your own code:  Find similar code and implement your own 
problem

http://nf.apac.edu.au/training/MPIProg/slides/index.html, http://www.openmp.org/, http://www.eecs.umich.edu/~qstout/parallel.html
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Bridging length scales by direct numerical simulation (DNS)

Understand the behavior of complex many-particle systems, without 
imposing constraints or boundary conditions

Discover new physical phenomena, e.g. collective events that involve 
a large number of particles

Caution:
Need to make sure that model produces useful results, i.e. includes 
new scientific content and discoveries
Pictures may be pretty, but what do we learn?

Why is large-scale modeling useful?
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Increase in computing power: 
Parallelization

Modeling of mechanical behavior of materials is highly demanding and requires 
models with millions and billions of atoms

2005
70,000,000,000 

particles
70 TFLOP 
computers

2010
7,000,000,000,000 particles

1,000 TFLOP computers

0.3 µm

1.2 µm

5 µm2000
1,000,000,000 

particles
10 TFLOP 
computers
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Lattice 
around 
dislocation

Atoms with higher energy 
than bulk are highlighted

Centrosymmetry method

partial dislocation

Stacking fault

[121]

[111]

b

Analysis of glide 
plane and Burgers vector
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Hardening mechanisms
creation of sessile structure
1. Dislocation cutting processes: Intersection of dislocations 
leads to generation of trails of point defects (trails of partial point 
defects, vacancy tubes and interstitials): when two screw 
dislocations intersect, each acquires a jog with a direction and
length equal to the Burgers vector of the other dislocation. Upon 
intersection, the dislocations cannot glide conservatively since
each jog has a sessile edge segment.
- Energy required to create point defects
- Therefore: Pinning of dislocations – dragging force:

Different kinds of point defects

Images removed due to
copyright restrictions.

0 0 0 0 0 0 0  0  
- 

* 0 0 0 0 0  0 0 0  o o o o o  o o 8 

1 
0 0 0 ~ 0 ~ -  
o o o o * a  I o o o  O t  

0 0 0 0 ~ 0  0 0 0  
o * o * ~ ~ o ~ ~  b 

o o o o a o-o-o'~' 0 0 0 1  W W O O  
O O O Q ~ O O C  ~ D 

0 0 0 0 ~ ~ 0 0 0 0  0 0 0  0 0 0  o o o o ~ 0 0 0 0  o o o o ~ O o O ~ O ~  Trail of 
O O O , * O  ~ 0 ~ 0 ~ ~ * 0 * 0 * ~ ~ 0 ~ 0 ~  Trail of Partial 0~0,0,' o ~ o ~ o ~ ~ ~ ~ ~  vacancy Tubes a 0  , o o o Interstitials 

oOo",~o~bOO~oO,"OOo Point Defects a 0  0  0  0 0  0  0  0 
0 0 0 0 0 0 0 0  

O O m m & o e D O  
00 0 0  

Reduced Dragging Force 
(20% of vacancy tube) 

Figure by MIT OCW. 
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Hardening mechanisms
creation of sessile structure

1/3 vacancy defect, volume a0
3/12 (vacancy: a0

3/4)

1

1

2

2b

b

b
b

Reaction of Two Partials

1

2

b

SF

b

Reaction of One Partial w/ SF

1 2

SF

b

(a)
(b)Figure by MIT OCW. Figure by MIT OCW.

Figure by MIT OCW. 
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Hardening mechanisms
creation of sessile structure

Sessile segment
Pinning

Figure by MIT OCW. 

x 

Vacancies 

Figure removed for copyright reasons.

See Fig. 4 in Buehler, M. et al.  "The dynamical complexity 
of work-hardening:  a large-scale molecular dynamics 

Glide plane for screw 

b 

b 

Glide Plane 
for Jog 

Sessile Segment Pinning 

Figure by MIT OCW.
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The plots show how two 
dislocations (denoted by ‘‘1’’
and ‘‘2’’) from opposite cracks
intersect and create reaction 
products. When a second 
reaction takes place at 
dislocation ‘‘2’’ involving a 
third dislocation, the
dislocation motion is severely 
hindered which is seen in the 
bowing out of the 
dislocations. Many of such 
reactions occur during the
simulation causing the 
generation of a complex 
defect network.

Hardening mechanisms
creation of sessile structure

Images removed due to copyright restrictions.
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2. Cross-slip

Activation of secondary slip systems by cross-slip and Frank-Read 
mechanisms: At later stages of the simulation

• After activation of secondary slip systems: More dislocation reactions (e.g. 
cutting processes). 

• “Rediscovered” Fleischer’s mechanism of cross-slip of partials that 
was proposed 1959

Hardening mechanisms
creation of sessile structure

Images removed due to copyright restrictions.
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Figure by MIT OCW.
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Observation of cross-slip

• At a critical dislocation density, secondary slip systems are activated

• This enables for additional plasticity to occur, but also further contributes 
to work-hardening as the dislocation density increases making it more 
difficult for dislocations to move

Images removed due to copyright restrictions.
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Hardening mechanisms
creation of sessile structure

3. Formation of Lomer-Cottrell locks

• Formation of sessile Lomer-Cottrell locks, with its typical shape of a straight 
sessile arm connected to two partial dislocations 

• Sessile junctions provide a severe burden for further dislocation glide

Images removed due to copyright restrictions.
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Final sessile structure

The characteristic structure of the network:

All sessile defects (both trails of partial and complete point defects) as well as 
sessile dislocations are straight lines that lie on the edges of Thompson’s tetrahedron 
(at intersections of stacking fault planes) 

Consists of…:
Vacancy tubes, 
interstitials, partial 
dislocations, and 
sessile dislocations

Images removed due to copyright restrictions.
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Final sessile structure

Image removed due to copyright restrictions.
See:
1.  Buehler, M. J., et al.  "The dynamical complexity of 
work-hardening:  a large scale molecular dynamics 
situation."  Acta Mechanica Sinica 21, no. 2 (2005):  
103-111.

2.  Buehler, M. J., et al.  "Atomic plasticity:  description 
and analysis of a one-billion atom simulation of ductile 
materials failure."  Computer Methods in Applied 
Mechanics and Engineering 193, no. 48-51 (2004):  
5257-5282.
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Case study:  
Cracking of a copper crystal…

• Critical load for cracking
• What happens when the load becomes large?
• How to analyze the complex data?
• Limitations of modeling…

Copper

Figure by MIT OCW.
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Dislocation nucleation and fracture 
condition

Ductile or brittle?
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Energy approach to elasticity



© 2007 Markus J. Buehler, CEE/MIT

Energy approach to elasticity

1st law of TD

2nd law
Applied force

Change in entropy is always greater or equal than the entropy 
supplied in form of heat; difference is due to internal 
dissipation

Dissipation rate

External work rate

Dissipation rate after consider 1st law of TD:

or
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Energy approach to elasticity

Elastic deformation:

Assume only internal energy change

Expand equation   dU/dt = dU/dx dx/dt

Therefore:

With strain energy density:
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Cauchy-Born rule

Idea:  Express elastic energy (strain energy density) for a atomistic 
representative volume element as a function of macroscopic applied strain

DΩ:  Mapping function, e.g. 

Impose macroscopic deformation gradient on atomistic volume element, 
then calculate atomic stress – this corresponds to the macroscopic stress
Strictly valid only far away from defects in periodic lattice (homogeneous 
deformation, perfect lattice, amorphous solid-average)

Allows direct link of potential to macroscopic continuum elasticity

U(l) a function of deformation 
gradient



© 2007 Markus J. Buehler, CEE/MIT

1D example:  Cauchy-Born rule

Impose homogeneous strain field on 1D string of atoms
Then get                             from thatklijklij c εσ =

))1((1)(1)( 0
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Dr
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Hexagonal lattice
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Figure by MIT OCW.
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Cauchy-Born rule:  Hexagonal lattice

Small strains:
(Eij are Green-Lagrangian strain
components from hyperelasticity)  

ijijE ε→

Eij

Eij

Λ1

3

1

l3

l2

l1

3Λ2

Θ

Figure by MIT OCW.



© 2007 Markus J. Buehler, CEE/MIT

Cauchy-Born rule:  Stress and elasticity 
coefficients

Small strains:  ijijS σ→

ijklijkl cC →

Small deformations (1st order elastic terms):

This expression is obtained by expanding the potential energy
(potential) up to second order terms 

( )222'' )(323
8
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Example:  Triangular lattice, LJ potential

ε=1
σ=1

12:6 LJ potential
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Figure by MIT OCW.
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Example:  Triangular lattice, 
harmonic potential
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Elastic properties of the triangular lattice with harmonic interactions, stress versus strain (left) and 
tangent moduli Ex and Ey (right). The stress state is uniaxial tension, that is the stress in the direction 
orthogonal to the loading is relaxed and zero.

Figure by MIT OCW.




