## Assembling a cost distance model

- This type of model assumes that traveling over a geographic space increases with distance traveled and with the type of surface
- The cost is based on cells the distance between cells and the cost of traveling over impediments in the cell

Distances from the current cell

| 42 | 30   | 42 |  |  |
|----|------|----|--|--|
| 30 | CELL | 30 |  |  |
| 42 | 30   | 42 |  |  |

Choosing the lowest cost of traveling to a neighboring cell (cost \* distance)



Cost factor(1) is multiplied by distance so least expensive cost is 42 units (assuming cellsize of 30 meters)

Finding the lowest cumulative cost route to the boundary

| 20 | 20 | 20 | 20 | 20   | 1  | 20 | 20 | 20 |
|----|----|----|----|------|----|----|----|----|
| 20 | 20 | 20 | 20 | 20   | 20 | 20 | 20 | 20 |
| 20 | 20 | 20 | 20 | ,1   | 20 | 20 | 20 | 20 |
| 20 | 20 | 20 | 1  | 20   | 20 | 20 | 20 | 20 |
| 20 | 20 | 20 | 20 | cell | 20 | 20 | 20 | 20 |
| 20 | 20 | 20 | 20 | 1    | 20 | 20 | 20 | 20 |
| 20 | 20 | 20 | 20 | 20   | 20 | 20 | 20 | 20 |
| 20 | 20 | 20 | 20 | 20   | 20 | 20 | 20 | 20 |
| 20 | 20 | 20 | 20 | 1    | 20 | 20 | 20 | 20 |

Total cost of red route is 23, total cost of green route is 42 (assuming a cellsize of 1).

## Assumptions

- Cell size is 30 meters<sup>2</sup>
- Costs of traveling are related to slope
  - 1 unit per meter traveled on flat terrain (up to 3 percent slope)
  - 3 units per meter traveled on intermediate slopes (3 to 6 percent slope)
  - 50 units per meter traveled on steep slopes

#### Assumptions - continued

- Costs of traveling over different land covers varies with cover:
  - forest is inexpensive (100 units)
  - cropland is expensive (1000 units assuming land is expensive and owners don't want to sell)
  - Residential land is prohibitively expensive (1,000,000 units you want to avoid doing this)
  - Additional cover types included in homework (wetlands, etc)

#### Assumptions - continued

- The cost of traveling over stream varies with the volume of the stream (based on area of watershed)
  - 5,000 units for values less than 5000 cells
  - 10,000 units for values from 5000 to 50,000 cells
  - 50,000 units for values greater than 50,000 cells

## Assembling the data

- From the digital elevation model

   Slopes: reclassify based on parameters in slide
   2
- From the land cover database
  - Land cover: reclassify based on parameters in slide 3
- From the accumulation cost grid (supplied)
  - Potential volume of stream flow: based on parameters in slide 4

#### Datasets

- dem
- landcover
- start\_grid
- stop\_grid
- river\_grid (easy to cross because of width)

## Creating a cost grid

- Merging data from the reclassified slope, land cover, and flow accumulation grid
  - Accomplished through addition of the three costs for the area using the raster calculator

# Creating the distance grid

- Based on the cost grid
- Using the cost distance function to find the cost of traveling to any point from the start grid

## Finding the least cost path

- Using the cost distance grid, the least cost path is determined, based on your assumptions
- Determines the minimum cumulative cost from traveling from the start\_grid to the stop\_grid