1.89, Environmental Microbiology

Prof. Martin Polz

Lecture 19

- Predation (cont.)
o Viruses, protozoa

Mechanisms of predation

 cell surface structures.- Proteins (example: transporters (broader host range))
- Lipopolysaccharides (LPS): "strain-specific"
\Rightarrow Elimination of prey is highly strain specific
Predation may play role of selecting for non-optimally adapted strains
- Encounter between viruses \& bacteria is highly passive \Rightarrow so concentration-dependant
"kill the winner" = winners of competitive events may get wiped out

Cell numbers (strictly speaking biomass can increase because cells grow bigger)

With more nutrients, rates speed up, but biomass stays the same due to predators.

- If prey density (again, this is the specific prey organisms \rightarrow total bacteria numbers can stay higher) drops below $\sim 10^{2}$ cells $/ \mathrm{mL}$, virus predation is no longer an effective control. Predation and "kill the winner" are mechanisms that generate \& maintain diversity with in communities
o Protozoa:
- flagellates (few $\mu \mathrm{m}$) - 10^{3} cells $/ \mathrm{mL}$
- cilliates ($10 \mu \mathrm{~m}-\mathrm{mm}$) - 100 cells $/ \mathrm{mL}$

- motile \& chemosensory abilities
- mostly non-selective predation
\longleftrightarrow Selection for size. Example elongated shapes become enriched; attached bacteria are some what protected
o Bdellorbrios: bacterial predators (bacteria that prey on bacteria)

Ecological/Biological role of predation

o Keeps overall cell numbers (prokaryotic) relatively constant
o Keeps prokaryotic population at more or less steady state concentration
o Determines rates of biogeochemical cycles (when N or P is limiting) (have enough carbon)

(Protozoan predators $\mathrm{C}: \mathrm{N} \sim 10$)

Microbial Community Structure

- Terrestrial environments
- Land vs. Sea
- Principles of Microbial communities
- Terrestrial environments (soil)
\leftrightarrows Soil: complex matrix of mineral particles, organic debris and interstitial pore spaces that can be filled with water or air.

Water is master variable in soils because its presence leads to anoxygenic situation
O_{2} concentration highly dependent on water content of soil.

Drying of soils: processes become water-limited
When pore spaces are filled with $<1 \mu \mathrm{~m}$ of water, bacterial motility is impossible

When filled with 3-30 $\mu \mathrm{m}$, predation becomes impossible.
Limiting nutrients \rightarrow Bottom-up control
Predation \rightarrow Top-down control

- Land vs. Sea
o Aquatic \rightarrow Relatively high transparency to light; turbulent mixing
\longrightarrow scales of environmental gradients are large (example: small sample reflective of whole environment): horizontally: $\mathrm{m} \rightarrow \mathrm{km}$

$$
\text { vertically: cm } \rightarrow \mathrm{m}
$$

Exception: particles of "marine snow"
o Sediments and soils \rightarrow principally structured by diffusion
\rightarrow scales: $\mu \mathrm{m}-\mathrm{mm}$ (cm)

Carbon Substrates

o Aquatic: primary producer = algae

- excretion of low MW C - compounds
- organic matter has relatively low $\mathrm{C}: \mathrm{N}$ ratio
o Terrestrial: primary producer = land plants
- bulk of organic C is in structural polymers and secondary metabolites (tannins, phenolics, etc.)
- humics
- high C:N ratio (less nitrogen-fixation)

All microbial metabolisms are present (or have to potential to be). Only their relative importance will shift in a given environment (due to amount of energylimiting substance).

Biogeochemical cycles governed by microbes and plants.

