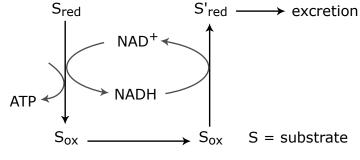
1.89, Environmental Microbiology Prof. Martin Polz Lecture 9

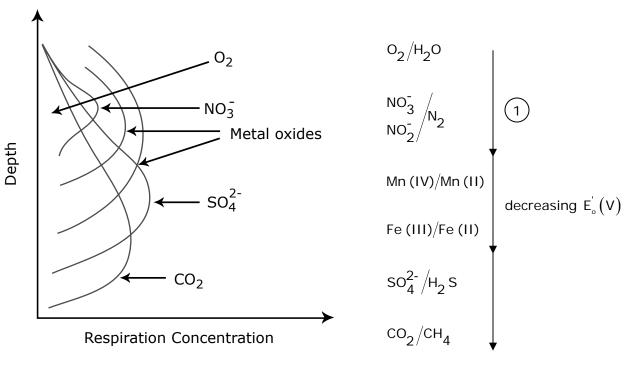

Biosynthesis is a huge cost for bacteria.

Pathogens are lucky because they use less energy, because their host makes stuff for them. They take up pre-synthesized precursors from host & intermediates.

1. Fermentation

No e- transport chain

→ Problem: how to reoxidize NADH?
Do internal redox reactions.


- a) Lactic acid fermentation:
 - ATP is generated by substrate level phosphorylation
 - Strict redox balance: average oxidation state of products is same as substrates
 - \rightarrow only substrates with intermediate oxidation states can be fermented
 - Most involve pyruvate as an intermediate
 - Only under strict anaerobic conditions

2. Respiration

• NADH reoxidation via e⁻ transport chain

 \rightarrow ultimate reduction of external e⁻ acceptor

• Some of the major e^- acceptors \Rightarrow

a) Aerobic Respiration:

O₂: e- acceptor

Aldehyde of glucose \rightarrow [CH₂O] + O₂ \rightarrow CO₂ + H₂O \sim 5 ATP/C

- Can generally use a great variety of carbon substrates
- Different species are often specialized in terms of C-substrate key use
- b) Anaerobic Respiration:
 - e⁻ transport is analogous to aerobes, but use different e⁻ carriers with different redox potentials.
 - Nitrate most common form of nitrate respiration = dentrification

gaining e⁻s N(V) $NO_3^- \rightarrow nitrate reductase$ V N(III) $NO_2^- \rightarrow nitrate reductase$ V N(II) $NO_2^- \rightarrow nitrate reductase$ V N(II) $NO \rightarrow nitric oxide reductase$ V N(I) $NO \rightarrow N_2$ gas N(O)

What is meant?

"glucose" $5[CH_2O] + 4NO_3^- + 4H^+ \rightarrow 5CO_2 + N_2 + 7H_2O$

Almost as energetically favorable as aerobic respiration (many aerobes can switch to using nitrate for respiration)

- As high as C-substrate diversity of aerobes
- Significance
 - o N-removal from systems
 - Production of green house gases N₂O, NO