1.89, Environmental Microbiology Prof. Martin Polz Lecture 14

Regulation (cont.)

2. Enzyme levels

Transcription:

mechanisms. Example: attenuation, small RNAs

3. Global control networks

Example:

- o Limitation of C, N, P \rightarrow can't use carbon if you have no N to grow.
- o Damage:
 - o Oxidation
 - o Radiation
 - o Temperature
 - o Osmosmotic
- Redox reactions: e⁻ transport chains
- Catabolite repression: if preferred carbon source is available, other substrates often remain untouched

Example:

 Diauxic growth (glucose, lactose used) uses CAP (Catabolite Activator Protein)

o Quor Exan – – o Signa –	um sensing: signal "density of similar cells". ple: uptake of DNA by G ⁺ cells Modulated by <u>autoinducer</u> molecules=small diffusible molecules produced at low but constant levels by the cell Autoinducer molecules induce their <u>own transcription</u> & <u>other pathways</u> Local concentration of autoinducer can reach a critical level at which point it induces increased production of itself → strong inducer of other pathways Il transduction & 2-component regulatory systems sensory kinases: example: motility Motility → <u>chemotaxis</u> : attractants repellants
- The CW tumble allows the bacterium to explore a small area where it senses as attractant	 CCW (Counter Clock Wise) → run, CW → tumble Tranducers (MCP protein) binds signal (attractant) a Che A autophosphorylates a Che A ~ Phas a high tendency of phosphorylation for Che Y a Che Y ~ Dbinds to flagella are motor → clockwise rotation a Che Z dephosphorylates Che Y ~ P

<u>Adaptation</u> – signal (attractant) does not change, so response goes down.

At this point Che A $\sim \bigcirc$ phosphorylates Che B (but at a slower rate). Che B $\sim \bigcirc$ demethylates the transducer (MCP) (Che are methylated transducer).

Microbial Ecology

• explore how diverse & abundant bacteria are in the environment & their ecological/biogeochemical function

Change in our perception of microbial diversity 1. direct cell counts replaced plate counts 2. molecular approaches for estimating diversity

1970's: "Great plate count anomaly"

• <u>CFU</u> (Colony Forming Units): spread dilution of samples onto culture plates

• <u>Direct Counts</u>: Fluorescent dyes (acridine orange, <u>DAPI</u>)

- Fix the cells with aldehydes
- o Mix with dyes
- o Observe under fluorescent microscope

Conclusion

Less than 1% of observable cells are easily culturable \rightarrow direct counts got way higher numbers than CFU method.