

Nepal Statistics

- Population: ~25.8 million (2002)
- Growth rate: 2.4%
- Life expectancy: 59 years
- Children < 5 mortality: 101/1000
- Children under height for their age: 54%
- Literacy: 27.5% total population
- GDP (\$PPP) per capita: \$1,224/capita (USD \$239/capita)

MIT Nepal Project 1999-2003

- Previous work:
 - Methodological Evaluation

 - Site Investigation (water quality testing and monitoring)
 Technology Evaluation: (household scale drinking water treatment system design and evaluation)
 - Implementation programs (Biosand, chlorination pilot study based on CDC Safe Water System)
- This year:
 - Product Development and Marketing (Ceramic Filters/SLOAN)
 - Development and Evaluation of Novel Technology (Biosand Pitcher Filter, SC-SODIS)
 - Social Evaluation (Arsenic)
 - Wastewater (Carpet dye, Detergents, Wetlands)

Motivation for Clean Drinking Water

- 1.1 billion people (5 million Nepalis) lack access to improved water supply (WHO, 2000)
- Millennium Development Goal
- Human Right to Water
- Household Water
 Treatment

<section-header>

Prior MIT Ceramic Filter Work in Nepal & Nicaragua

Junko Sagara, 2000

Study of Filtration for Point-of-Use Drinking Water Treatment in Nepal

Daniele Lantagne, 2001

 Investigation of thePotters for Peace Colloidal Silver Impregnated Ceramic Filter

Jason Low, 2002

 Appropriate Microbial Indicator Tests for Drinking Water in Developing Countries and Assessment of Ceramic Water Filters

Rebeca Hwang, 2003

 Six Month Field Monitoring of Point-of-Use Ceramic Water Filter by Using H₂S Paper Strip Most Probable Number Method in San Francisco Libre, Nicaragua

 Continued Laboratory Research (Dies)

2003 Nepal Ceramic Filter Research Objectives

- Continued Laboratory Research (Dies)
- Documentation of Production Process (Dies)

2003 Nepal Ceramic Filter Research Objectives

- Continued Laboratory Research (Dies)
- Documentation of Production Process (Dies)
- Prototype Development (Cheung)

2003 Nepal Ceramic Filter Research Objectives

- Continued Laboratory Research (Dies)
- Documentation of Production Process (Dies)
- Prototype Development (Cheung)
- Preliminary Market/Consumer Analysis (Sloan Team)

Laboratory Research

- Tested 5 candle filters:
 - Ceradyn (Katadyn), Gravidyn (Katadyn), Hari White Clay Candle (w/ & w/out colloidal silver), Hong Phuc
- Tested 3 Disks
 - Hari White Clay Disk (2 w/ colloidal silver; 2 w/out)
 - Reid Harvey Red Clay disk (2 w/ CS; 2 w/out)
 - Reid Harvey Black Clay disk (2 w/ CS; 2 w/out)
- Tested for:
 - Flow rate
 - Removal of total coliform and E. coli

ab Test Results

- The results from these tests support the hypothesis that colloidal silver helps to inactivate coliform bacteria in the short term.
- A lot more lab and field testing is required
 - Long term testing
 - Challenge testing
 - Colloidal Silver effectiveness over time

Safe Household Drinking Water via BioSand Filtration Pilot Project Evaluation & Feasibility Study of a BioSand Pitcher Filter Melanie Pincus

BioSand Filter Overview

- Designed by Dr. David Manz at the University of Calgary, Alberta, Canada
- Specifically for use by poor people in developing countries.
- Relies on natural biological, chemical and physical mechanisms to purify water.

Pilot Project Evaluation

- Evaluate performance of recently installed concrete BioSand filters.

Pilot Project Potential

- Communities interested in and accepting of BioSand technology.
- All filters had high turbidity removal.
- Flow rates varied from 1.0 37.5 L/hr.
- Results from microbial analyses mixed (n = 9).
 - 2 filters at 99% E. coli removal from highly contaminated
 - raw water.
 - 3 filters contaminating relatively clean source water.

- One day of testing insufficient to adequately characterize BioSand -filter performance. Regular, repeated samplings of source water, -filtered water and water in collection buckets should be performed on these household units.

Feasibility Study of a BioSand Pitcher Filter

- Conceptualized as a smaller, cheaper alternative to the concrete BioSand filters.

- A potential interim measure as households mobilize funds for a larger capacity water filter.

- Field and laboratory experiments to evaluate pitcher filter viability by cross-checking performance with concurrent performance of commercially available filters.

Pitcher Filter Potential

- Microbial (<i>E. coli</i>) r	emoval of
pitcher filters compa	rable to
existing BioSand filtr	ation
technology <u>Nepal</u>	MIT

Pitcher filters	80% 86%	97% 97%
BioSand filters	81% 87%	95%
Ripening period (d)	8-10	30-40

- Strong correlation between biofilm maturation periods & source water quality.

Technical and Social Evaluation of Three Arsenic Removal Technologies in Nepal

Research Objectives

- Technical Evaluation: Arsenic removal and flow rate.
- Social Evaluation: Survey Questionnaire to evaluate arsenic awareness and social acceptability of each filter
- Economic Evaluation: willingness-to-pay

Three-Kolshi Filter

 First studied in Nepal by Jessica Hurd in 2001

2-Kolshi

First studied in Nepal by Jeff Hwang in 2002

Arsenic-Biosand Filter

- Invented by Tommy Ngai (M.Eng.2002)
- Won Lemelson International Technology Award (2002)
- Pilot Scale implementation in Fall 2002

TECHNICAL EVALUATION

- All filters have good arsenic removal rates (>90%)
- Flow rates differ:
 - Arsenic-Biosand: 10 to 20 L/hr
 - 3-Kolshi: 0.5 to 3L/hr
- Confirmation of previous studies

SOCIAL EVALUATION

- Surveyed 54 families
- 3 Districts
- 3 Different Technologies
- Used a survey questionnaire of 10-20 questions depending on technologies

How often do filtratio	you skip n?
TYPE OF FILTER	SKIP FILTRATION
ARSENIC-BIOSAND	0%
THREE-KOLSHI	25%
TWO-KOLSHI	11%

CONCLUSIONS

- Good level of arsenic awareness
- Good social acceptability of each filter
- Arsenic-Biosand Filter is most appropriate.
- However, cost is above willingness-to-pay
 - If filters distributed for free or subsidized: Arsenic-Biosand is best option
 - If filters sold: 3-Kolshi for small families and Arsenic-Biosand for big families.

Semi- Continuous Solar Disinfection System

Massachusetts Institute of Technology Xanat Flores

What is Solar Disinfection?

- Inactivation of microorganisms present in water due to:
 - UV-A radiation (λ from 315 to 400 η m)
 - Synergistic effect with temperature
- Variations:
 - Exposure time
 - Clear, black or reflective surface

	SOI	DI:	S
	PROS		CONS
1. 2.	Simple Very cheap (almost	1.	Small amounts of water treated
	free)	2.	Difficulty in getting
3.	Easy to understand		bottles (problem in
4.	Simple to maintain		Lumbini)
		3.	Waste management of empty bottles
		4.	Social acceptability (hard work for
			housekeepers)

CONTINUOUS SOLAR DISINFECTION SYSTEMS

PROS	CONS
 Larger quantities of water purified in a given time. 	 More difficult to maintain and operate. More expensive. Requires more sophisticated operator

	SEMI-CONTIN	U	OUS SODIS
	PROS		CONS
1.	Larger amounts of water treated.	1.	Mechanism needs to be very well
2.	Inexpensive		understood.
3.	PET bottles are not replaced as often as in SODIS.	2.	Flow rates have to be established for different weather
4.	Relatively simple to maintain and operate		conditions.

OBJECTIVES OF MY RESEARCH

- Technical feasibility of SC-SODIS system
 - Construction
 - Performance
 - Use of local materials.
- Social acceptability
- Economic feasibility

Constructed System

RESULTS

CONCLUSIONS

- Technical: SC-SODIS is technically feasible in region studied based on data collected.
- Construction: Found local materials (Butwal and Lumbini).
- Social: Preliminary feedback showed local people preferred SC-SODIS to SODIS.
- Economic: Construction costs below \$0.50 (NRs 300).

- Find a local manufacturer of SC-SODIS system to reduce construction time.
- Further study of flow rates.
- Study during monsoon season.

Nepali Wastewater Solutions

The Effects of Carpet Dye on the Bagmati River Hillary Green

Effects of Detergent Use on Water Quality in Kathmandu, Nepal Amanda Richards

Assessment of Constructed Wetland System in Nepal Saik-Choon Poh

Wastewater from Kathmandu

Domestic Wastewater Population (year 2000) : 1.43 million Wastewater Generated: 124 MLD Sewerage System Coverage: 38% Wastewater Collected: 47 MLD 5 municipal wastewater treatment plants Total Treatment Capacity (year 2000) : 19.9 MLD

Capacity Deficit : -27.1 MLD (ADB TA Number 2998-NEP, Feb. 2000)

Overvie	w of Wa s	stewater Treatr	nent Plants
	Reported	Stat	us
Plant	Capacity MLD	ADB Feb.2000 Report	MIT Nepal Team Jan. 2003
Guheshwori	17.3	Under Construction	Operating
Hanumanghat	0.5	Partially operating	Not operating
Sallaghari	2.0	Partially operating	Not operating
Kodku	1.1	Partially operating	Partially operating
Dhobighat	15.4	Not operating	Not operating
(Arata, 20)03)		

Carpet Dye in Nepali Surface Water

Hillary Green

Do Carpet Dyes Cause Significant Water Quality Deterioration of the Bagmati River ?

- Identify sites of carpet manufacturers along the Bagmati
- Test and collect relevant water quality data
 - absorbance
 - chromium
 - -COD
 - -DO

Sampling Points Along the Bagmati

Chromium Results - Water Samples

- Out of 12 water samples, 8 had chromium levels <0.01 mg/L
- The other levels were as follows

Sample Location	Cr Concentration (mg/L)
Pashupatinath	0.01
Tilganga	0.03
Sundarighat	0.02
Chovar	0.03

 WHO guideline for chromium in drinking water is 0.05mg/L

- Dye samples acquired from Mount Everest Dying Company
- Chromium levels in dyes as follows

Dye Color	Cr Concentration (ppm)
Indigo	55.3
Red	1,270
Navy	2,400
Black	2,400

• An increase in dye waste to the river could increase the Cr levels in the river

Effects of Detergent Use on Water Quality in Kathmandu, Nepal

Amanda Richards

<section-header><list-item><list-item><list-item><list-item><list-item>

- Remaining surfactant considered to be ABS

Surfactant Conclusions

- Laundry detergent not a likely major contributor to foaming at Guheshwori WWTP
 - Probable dilution to concentrations below foaming limit
 - Detergent biodegradability meets standards set by United States and European Governments
- Other possible causes of foaming for future study:
 - Surfactants used in industrial detergents (textile and carpet industries)
 - Filamentous bacteria

Phosphates Analysis

- Detergents analyzed for phosphates

 Evaluate contribution to eutrophication in the Bagmati River
 Bagmati River
- Average concentration of 402 mg PO₄/kg detergent, or 2.5 mg PO₄/L wash water
- PO₄ levels from washing laundry are insignificant compared to Bagmati River concentrations (reach as high as 1.6 mg/L)
 - Analyzed at 1, 5 and 10 loads/family-wk

Assessment of Constructed Wetland Systems in Nepal

Saik-Choon Poh

Constructed Wetland Systems in Nepal

- Reasons for failure of large treatment plants:
 - High Cost
 - Inefficient gov't water/ WW bureaucracy
 - Inappropriate transfer of 1st World technology to 3rd World conditions
- Small and decentralized treatment plants are high in demand
- Constructed Wetlands introduced in Nepal in 1997 by a local NGO research institute, ENPHO, as a cheap alternative (Laber, Haberl, Shrestha 1999)

Existing CW Systems in Nepal

No	Project	Types of Constructed Wetlands
1	Dhulikhel Hospital	Horizontal & Vertical Flow Bed
2	Grey Water Recycling	Vertical Flow Bed
3	Septage Treatment for Kathmandu Municipal Corporation	Vertical Flow Bed
4	Malpi International School	Horizontal & Vertical Flow Bed
5	Sushma Koirala Memorial & Reconstructive Surgery Hospital	Horizontal & Vertical Flow Bed

	<u>Detentio</u>	on Tim	<u>-</u>
Sushma Koirala Mer	norial Plastic & Re	constructive Su	rgery Hospital
Detention Time For Ho	rizontal Flow Bed	Detention Time F	or Vertical Flow Bed
Constant Q T-Rule 8	.6 hrs	Constant Q T-Rule	10.1 hrs
With Q facor 6	.7 hrs	With Q factor	7.8 hrs
Dhulikhel Hospital			
Detention Time For Ho	rizontal Flow Bed	Detention Time F	or Vertical Flow Bed
Constant Q T-Rule 6	.3 hrs	Constant Q T-Rule	11.0 hrs
With Q facor 5	.6 hrs	With Q factor	12.2 hrs

		0	hulikhe	Hospita	<u>I</u>		
K , For H	orizonta	l Flow Be	d				
			-	-			
k _r (1/day)	10.0	12.2	15.0	17.5	22.5	35.0	50.0
R.E (%)	80.0	84.8	88.3	90.7	94.0	97.6	99.0
R.E (%)	5.0	7.0	9.0	11.0	13.0	20.0	25.0
Sushma	Koirala N	89.5	92.5	94.5	95.8	98.1	98.9
Sushma K _r For H	Koirala M	Memorial	92.5 Plastic &	8 Recons	95.8	98.1 Surgery	98.9
<u>Sushma</u> K _r For H _{kr} (1/day)	Koirala M orizonta 9.0	89.5 Memorial I Flow Be	92.5 Plastic 8 ed	94.5 Recons 17.0	95.8 structive 20.0	98.1 Surgery 28.0	98.9 Hospi
Sushma <i>K_T For H</i> ^{k_r (1/day) R.E (%)}	Koirala M orizonta 9.0 81.5	89.5	92.5 Plastic & ed 14.0 90.5	94.5 Recons	95.8 structive 20.0 95.0	98.1 Surgery 28.0 97.4	98.9 Hospi 45.0 98.9
Sushma K, For H k, (1/day) R.E (%) K, For V	Supervised and the second seco	Memorial I Flow Be 11.0 86.0	92.5 Plastic & cd 14.0 90.5	94.5 Recons - 17.0 93.2	95.8 structive 20.0 95.0	98.1 Surgery 28.0 97.4	98.9 Hospi 45.0 98.9
Sushma K , For H k, (1/day) R.E (%) K , For V k, (1/day)	Koirala M orizonta 9.0 81.5 ertical Fl 7.0	89.5 Memorial I Flow Be 11.0 86.0 bow Bed 8.0	92.5 Plastic & ed 14.0 90.5	94.5 Recons 17.0 93.2 12.0	95.8 structive 20.0 95.0 17.0	98.1 Surgery 28.0 97.4 22.0	98.9 Hospi 45.0 98.9 25.0

Summary of CW's Performance													
Dhulikhel Hospital													
Parameters													
Date	BOD(mg/l)			COD(mg/l)			TSS(mg/l)			PO4(mg/l)			
			%			%			%			%	
	In	Out	Removal										
12-Jul-02	62	2	98	122	20	84	66	3	95	3	4	-	
24-Sep-02	84	5	94	131	23	82	106	5	95	4	1	75	
15-Nov-02	72	2	97	98	22	78	46	5	89	3	2	45	
14-Jan-03	349	14	96	680	50	93	380	25	94	9	5	43	
Average Removal % 96			96			84			93			54	
(ENPHO, 2003)													

Summary of CW's Performance

SKM Hospital

	Parameters											
Date	BOD₅ (mg/l)			COD (mg/l)			TSS (mg/l)			NH3(mg/l)		
	In	Out	% R	In	Out	% R	In	Out	% R	In	Out	% R
37043	436	18	96	1746	71	96	225	8	96	148	26	82
37159	737	5	99	1416	71	95	520	5	99	131	1	99
37445	212	2	99	433	20	95	160	3	98	111	2	98
37512	475	23	95	1110	83	93	655	6	99	26	1	97
37577	279	3	99	766	40	95	146	10	93	45	3	94
Elimination Rates % 98			98			95			97			94
(ENPHO, 2003)												

Acknowledgments

- ENPHO
- IBS
- IDE
- RWSSSP/FINNIDA
- Dr. Eric Adams
- Reid Harvey
- Simon Johnson/Global E-lab
- Hari Govinda Pajapati
- Mt. Everest Dyeing Company
- Ram Deep Shah

References

Arata, Tetsuji. *Wastewater in the Greater Kathmandu*. Japan Association of Environment and Society for the 21st Century 2003

Laber, Johannes; Haberl, Raimund; Shrestha, Roshan R. *Two-Stage Constructed Wetland for Treating Hospital Wastewater in Nepal.* Wat. Sci. Tech, Vol. 40, No.3, pp. 317-324, 1999. Elsevier Science Ltd: Great Britain. 1999.

Metcalf & Eddy, Inc. with CEMAT Consultants, Ltd; *ADB TA Number 2998 – NEP*, "Urban Water Supply Reforms in the Kathmandu Valley", Volume 1, February 18, 2000.

Shah, Ram Deep and Das Sunil Kumar. "Performance of Deep Oxidation Ditch", 28th WEDC Conference, 2002.

Shrestha, Roshan R. *A New Step Towards Wastewater Treatment in Nepal.* A Journal of the Environment, Vol. 6, No.7, 2001. Ministry of Population and Environment, Nepal. 2001

WHO, 2000.