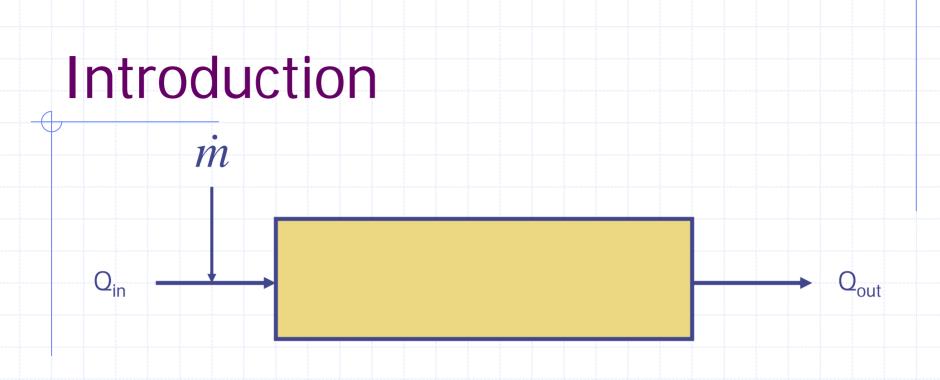
5 Reactor Vessels

Motivation Fully-mixed reactors Single & multiple tanks with pulse, step and continuous inputs Dispersed flow reactors with pulse and continuous inputs Examples



A tank, reservoir, pond or reactor with controlled in/out flow

If
$$Q_{in} = Q_{out} = Q$$
 then $t_{res} = \tau = t^* = V/Q$
Used interchangeably

Generally more interest in what comes out than what's inside reactor

Applications

Natural ponds and reservoirs
Engineered systems (settling basins, constructed wetlands, combustion facilities, chemical reactors, thermo-cyclers...)

Laboratory set-ups: simple configurations with known mixing so you can predict/control the fate processes

Wastewater Treatment Plants

Secondary settling

Primary settling

Waste stabilization

Constructed Wetlands

Potash Evaporation Ponds

Southern shoreline Dead Sea

Classification

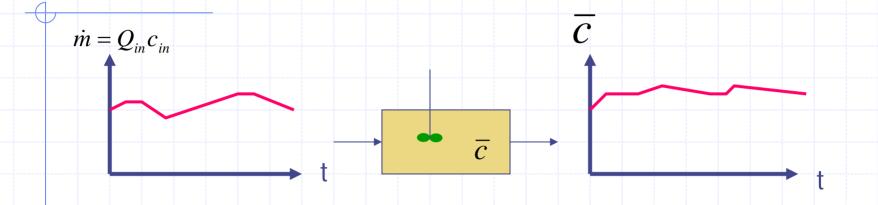
 Flow: continuous flow or batch
Spatial structure: well-mixed or 1-, 2-, 3-D

Loading: continuous, intermittent (step) or instantaneous (pulse)

Single reactor or reactors-in-series

Initially look at single continuously stirred tank reactor (CSTR)

Well-mixed tank, arbitrary input



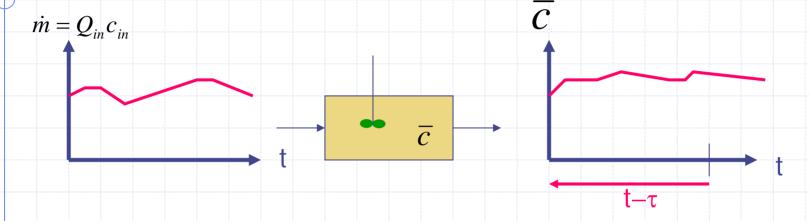
$$\frac{dV}{dt} = Q_{in}(t) - Q_{out}(t)$$

Conservation of volume

 $\frac{d(cV)}{dt} = c_{in}(t)Q_{in}(t) - c(t)Q_{out}(t) + r_iV$ Conservation of mass

Well-mixed tank

IC

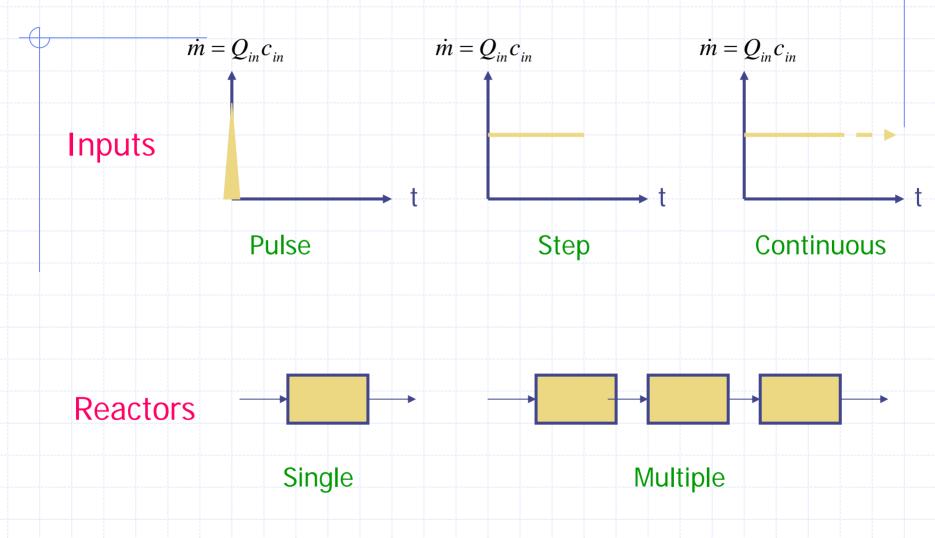


 $\frac{dc}{dt} = \frac{c_{in}(t) - c}{t^*} - kc \qquad \qquad \text{If } Q_{in} = Q_{out} = \text{const}, \ V = \text{const}; \ t^* = V/Q; \text{ and } r_i = -kc$

$$c(t) = c_o e^{-(t/t^* + kt)} + \int_{0}^{t/t^*} c_{in}(\tau) e^{-[(t-\tau)/t^* + k(t-\tau)]} d(\tau/t^*)$$

Convolution integral (exponential filter that credits inputs w/ decreasing weight going backwards in time)

Roadmap to solutions (3x2)



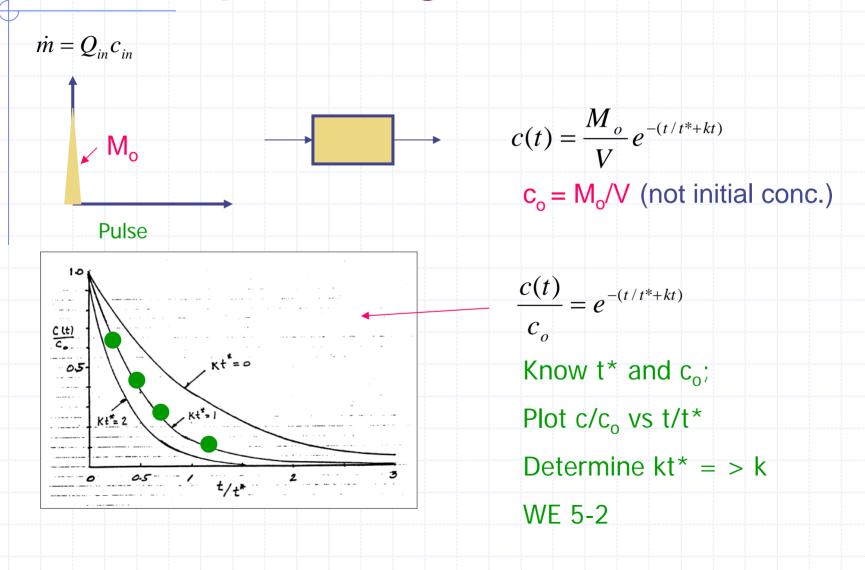
Pulse input to single tank

 $\dot{m} = Q_{in}c_{in}$

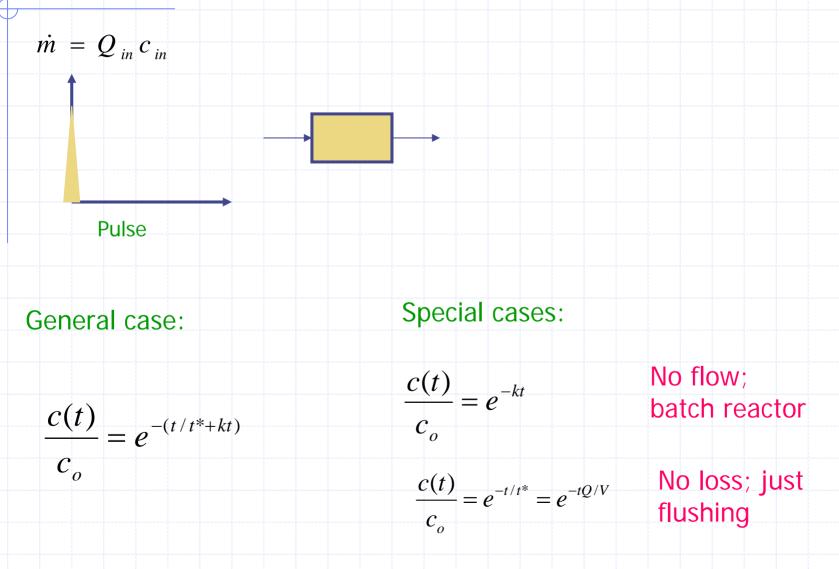
Pulse

May have practical significance—e.g. instantaneous spill More commonly used as a diagnostic; Produces stronger gradients than other types of inputs

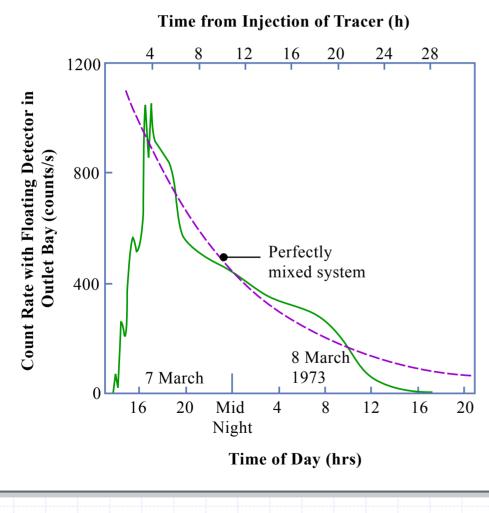
Pulse input, single tank, cont'd



Pulse input, single tank, cont'd



In practice never exactly wellmixed



White, (1974)

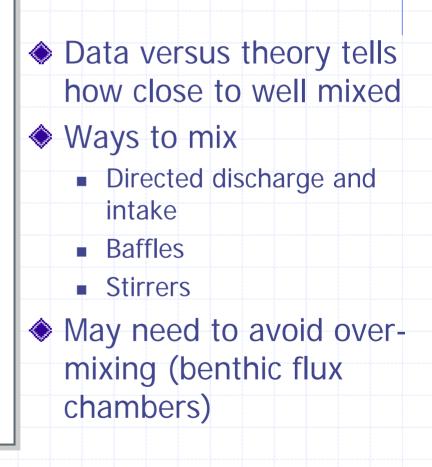
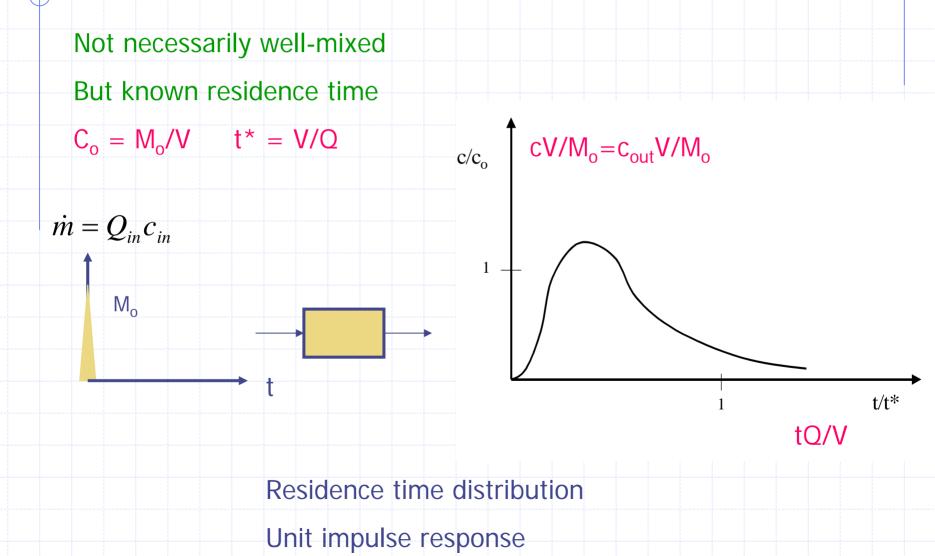


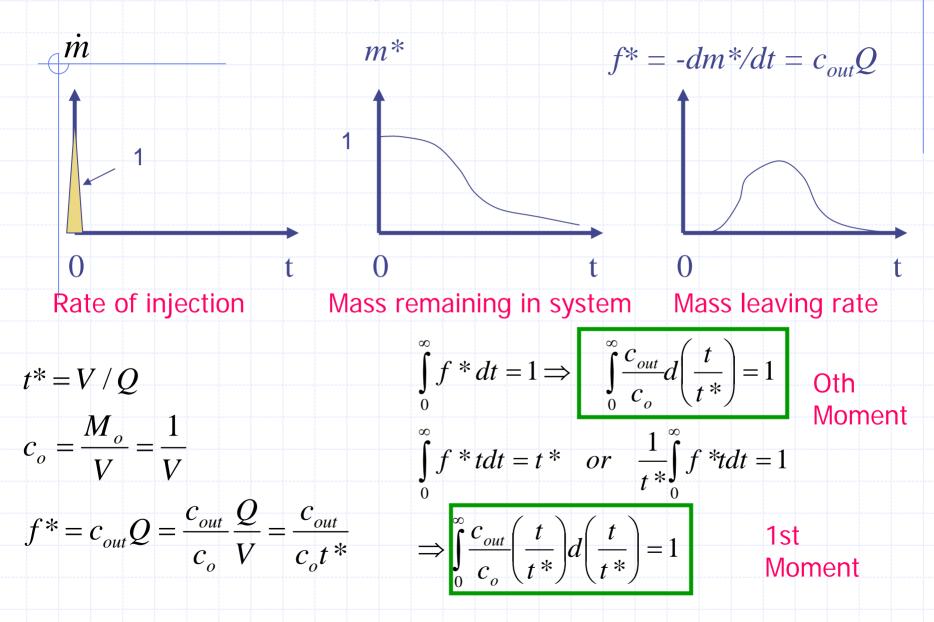
Figure by MIT OCW.

Benthic Flux Chambers

Slight diversion: Residence time properties of reactor vessels

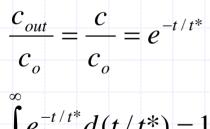


Recall from Chapter 4



RTD, cont'd

Oth and 1st moments of normalized distribution $(c_{out}/c_o vs t/t^*)$ are both unity



$$\int e^{-t/t^*} d(t/t^*) =$$

0 00

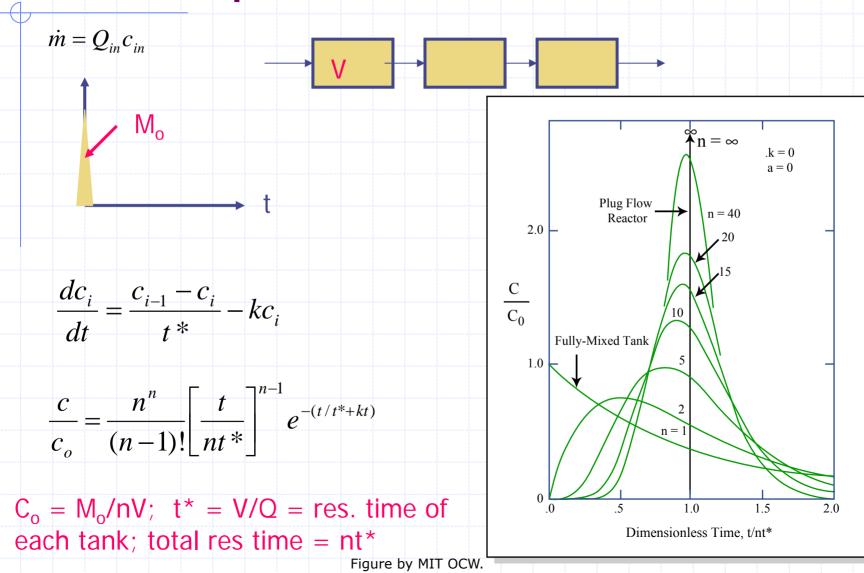
$$\int_{o} e^{-t/t^{*}} (t/t^{*}) d(t/t^{*}) = 1$$

Area under curve and center of mass are both one

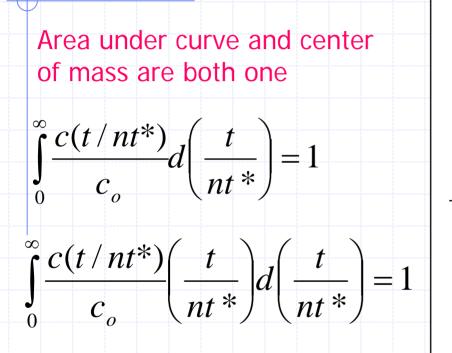
t/t*

 c/c_{o}

Pulse input to tanks-in-series



Pulse input to tanks-in-series



Limits of plug flow and fully well-mixed

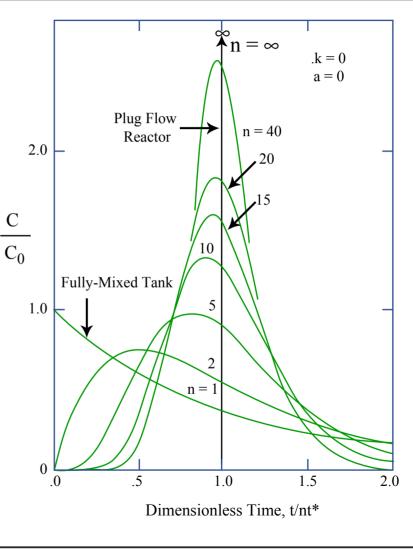
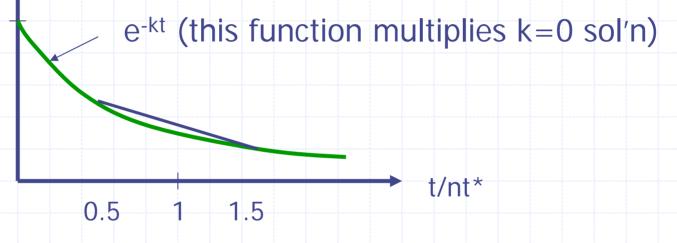


Figure by MIT OCW.

Advantages of Plug Flow?

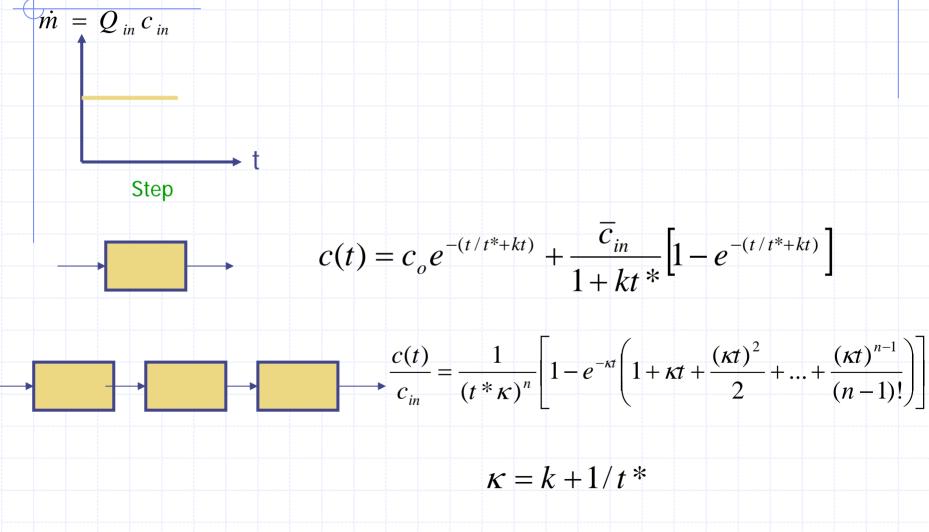
Advantages of Plug Flow?



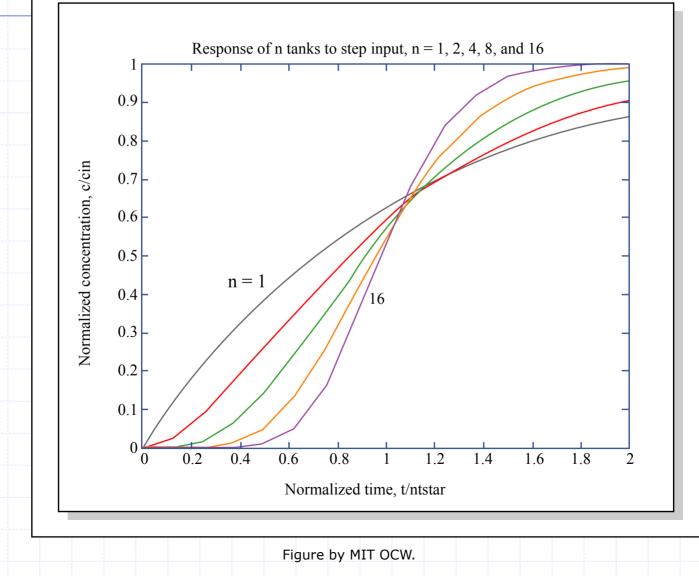
Everything "cooks" the same time. The mean residence time of a water parcel is always nt* (by definition) but under plug flow all parcels reside for nt*

This advantage obviously applies for continuous and step injections as well

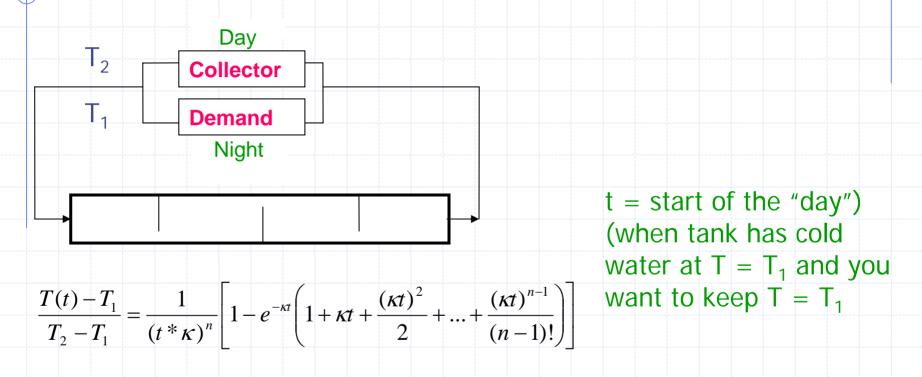
Step input, single and multiple



Multiple reactors, k = 0



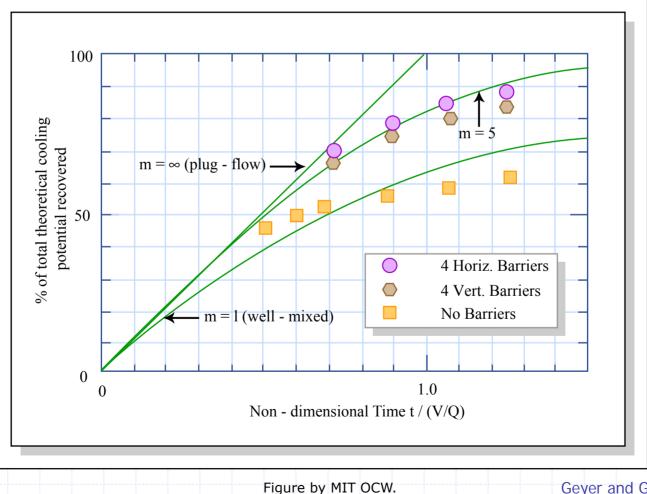
WE 5-3 Thermal storage tank



$$R(t) = \frac{100\%}{nt^*} \int_0^t \frac{T_2 - T(t)}{\Delta T_0} dt$$

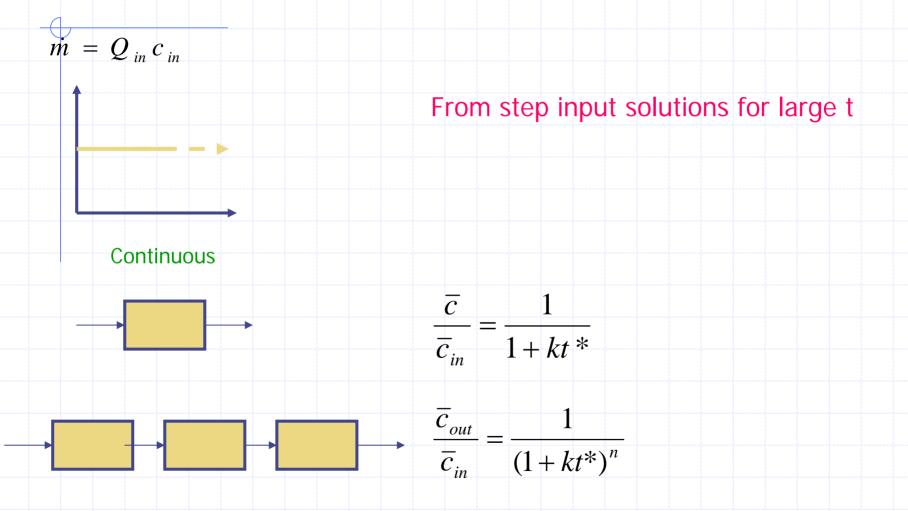
Percent of theoretical cooling (or heating) potential, a measure of hydraulic efficiency of storage system

Thermal storage tank, cont'd

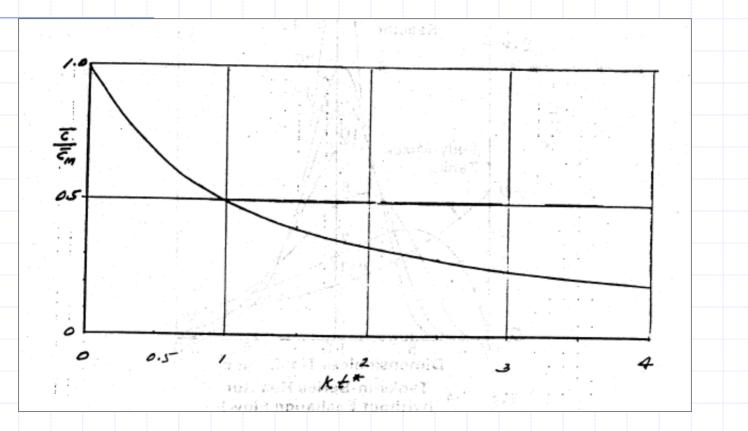


Geyer and Golay (1983), Adams (1986)

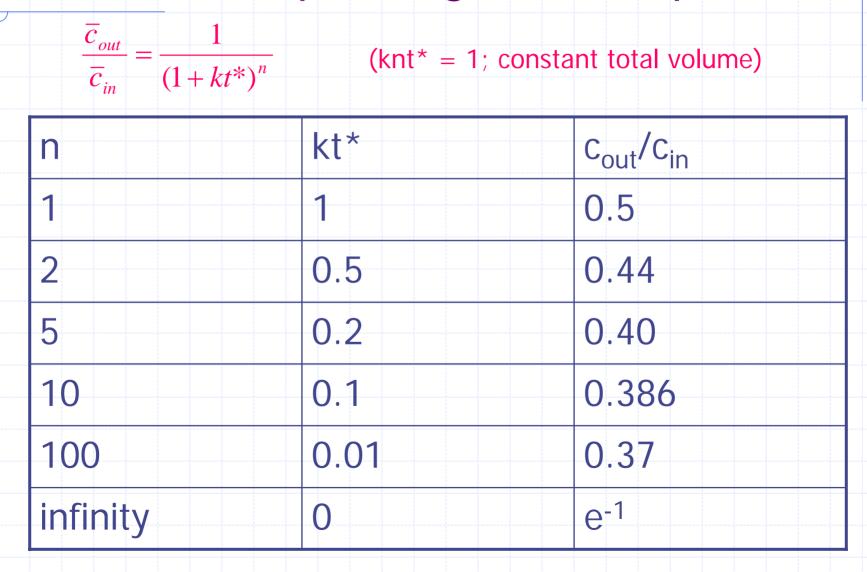
Continuous input single & multiple



Continuous input, single tank



Continuous input single & multiple



Dispersed flow reactor

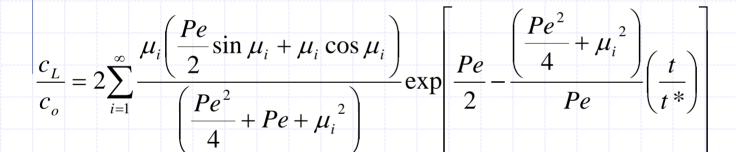
Engineer delayed response (--> plug flow) by making the reactor long & narrow. Density stratification should also be minimal (see Sect 5.4.1)

$$\frac{\partial c}{\partial t} + u \frac{\partial c}{\partial x} = \frac{1}{A} \frac{\partial}{\partial x} \left(E_L A \frac{\partial c}{\partial x} \right) - kc$$

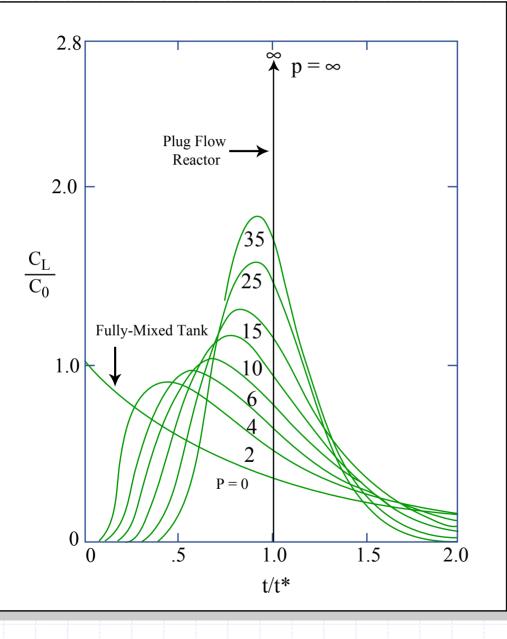
(Small) entrance and exit sections may be treated differently

Pulse input

 $Q_{in} = Q_{out} = const; A = const; k = 0 and pulse input at x = 0$



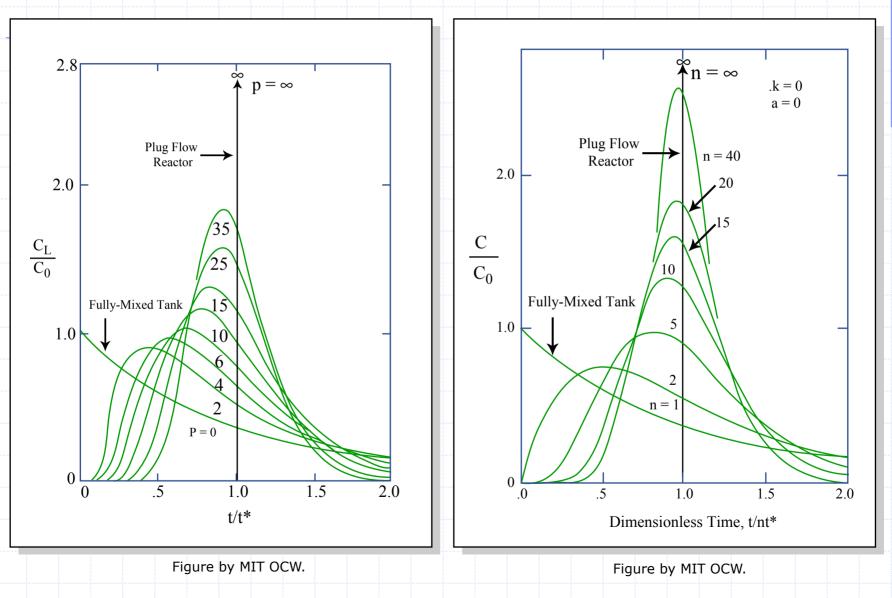
Dispersed flow, pulse input



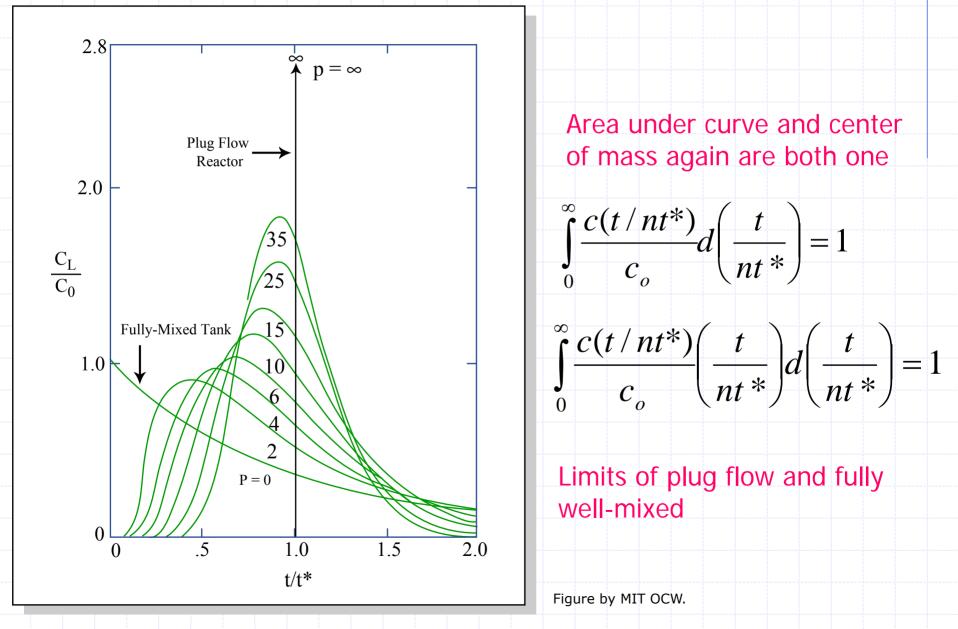
♦ A lot like tanks-inseries ♦ Greater n or Pe $(\text{lower } E_1) = > \text{plug}$ flow ♦ Pe ~ 2n-1 (WE 5-5) Elongation sometimes done with baffles

Figure by MIT OCW.

Dispersed flow vs tanks-in-series



Dispersed flow reactor



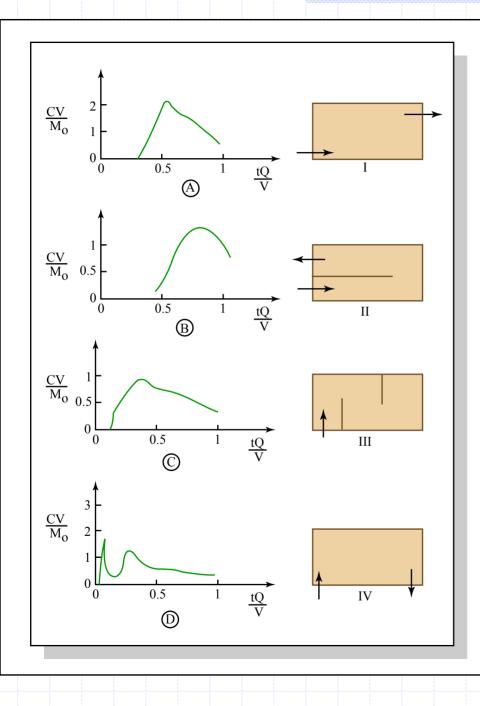
(Idealized) effect of central baffle

 $Pe = \frac{UL}{E_L} = \frac{Q}{HB} \frac{A}{B} \frac{1}{E_L} = \frac{QA}{HE_L B^2}$

$$E_{L} \cong \frac{0.01U^{2}B^{2}}{u_{*}H} \sim \frac{UB^{2}}{H}$$
$$Pe = \frac{UL}{E_{L}} \sim \frac{ULH}{UB^{2}} \sim \frac{LH}{B^{2}}$$

If $E_L = const$, B decreases by 2x, so Pe increases by 4x; real increase could be even more

L increases by 2x and B decreases by 2x, so Pe increases by 8x.



Can you place the UIR (A-D) with the schematic cooling pond (I-IV)?

Figure by MIT OCW.

Cerco, 1977

WE5-5 Dispersed flow vs tanks-in-series

River: L = 10 km; B = 20 m; H = 1 m; $Q = 10 \text{m}^3/\text{s}$; $S = 10^{-4}$

What are equivalent values of Pe and n?

 $u_* \cong \sqrt{gHS} = \sqrt{10 \cdot 1 \cdot 10^{-4}} = 0.032 m/s$

u = Q/BH = 0.5 m/s

 $E_L = 0.01U^2 B^2 / Hu_* \cong 0.01 \cdot 0.5^2 \cdot 20^2 / (1 \cdot 0.032) \cong 30m^2 / s$

 $Pe = UL / E_L = 0.5 \cdot 10^4 / 30 = 167$

 $n \cong P/2 = 83.$

A finite difference model using upwind differencing would want to use a spatial grid size of order 10⁴/83 or 120 m

Dispersed flow, continuous input

W

X

$$u\frac{dc}{dx} = E_L \frac{d^2c}{dx^2} - kc$$

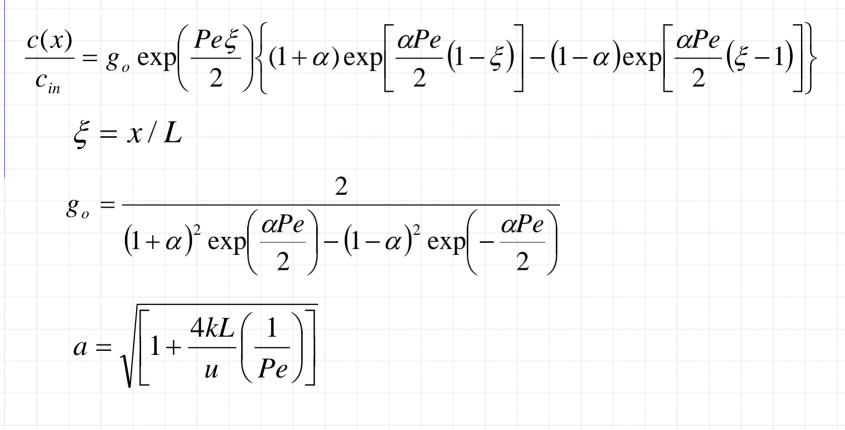
Boundary conditions

$$Qc_{in}\Big|_{x=0^-} = \left(Qc - AE_L \frac{dc}{dx}\right)\Big|_{x=0^+}$$
 at $\mathbf{x} = \mathbf{0}$ (Type III)

$$Qc\Big|_{x=L^-} = Qc\Big|_{x=L^+}$$
 at $x = L$ (Type II)

Dispersed flow, continuous input

Solution (0 < x < L)

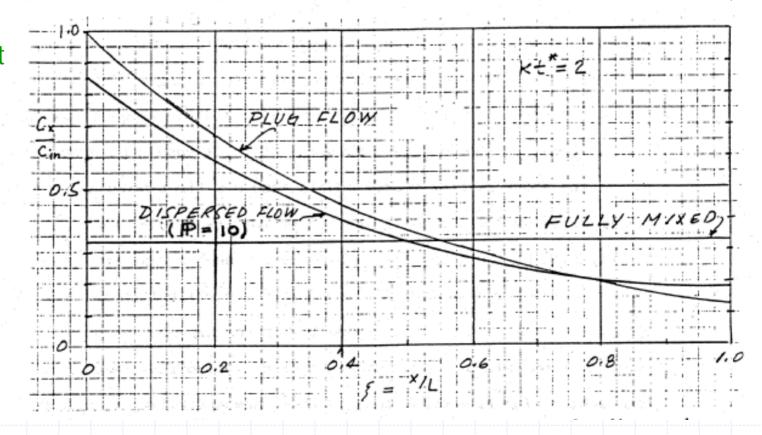


Solution (0 < x < L)

Plug flow: greater loss at small x → lower concentration at large x

Note:

 $C(x=0) < C_{in}$

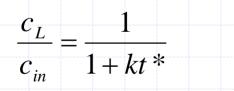


At outlet

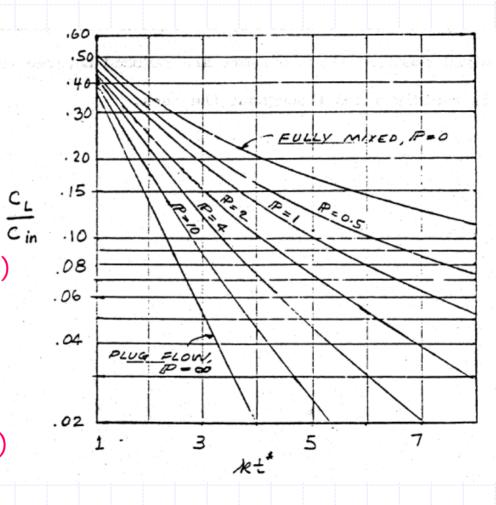
Solution (x=L)

$$\frac{c_L}{c_{in}} = 2ag_o \exp(Pe/2)$$

For Pe --> 0 (well mixed)



For Pe --> oo (plug flow)

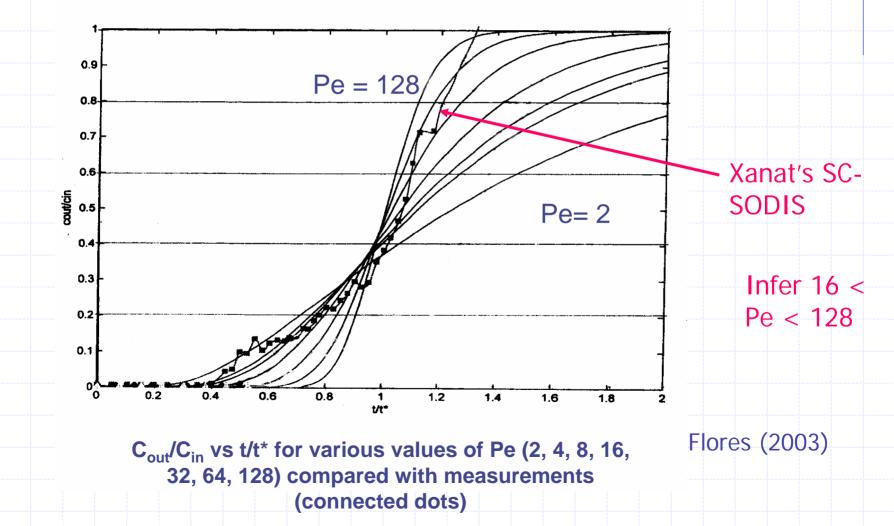


$$\frac{c_L}{c_{in}} = e^{-kL/u} = e^{-kt^*}$$

WE 5-6 Continuous solar disinfection

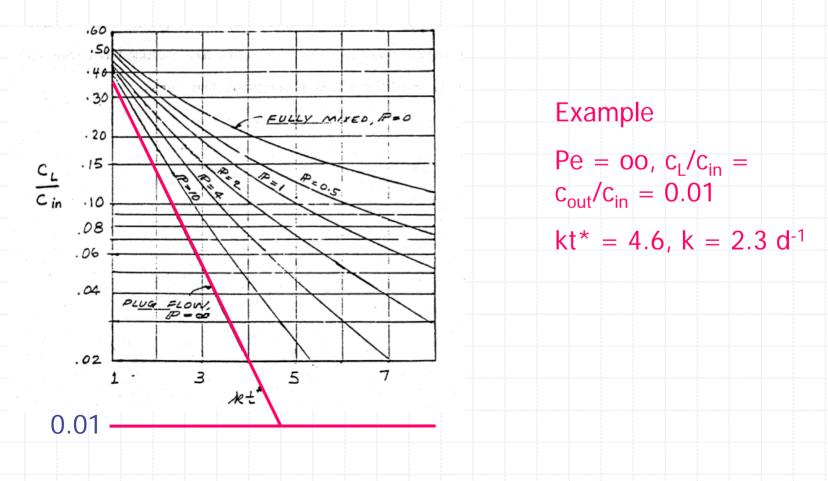
SODIS: simple household treatment technology for destroying pathogens using UV and temperature Pioneered by EAWAG, SANDEC and others; studied by former MEna students in Nepal Continuous (or semicontinuous) operation more convenient than discrete bottles

Dispersed flow reactor response to step input (eq 2.104), k = 0



Continuous SODIS, cont'd

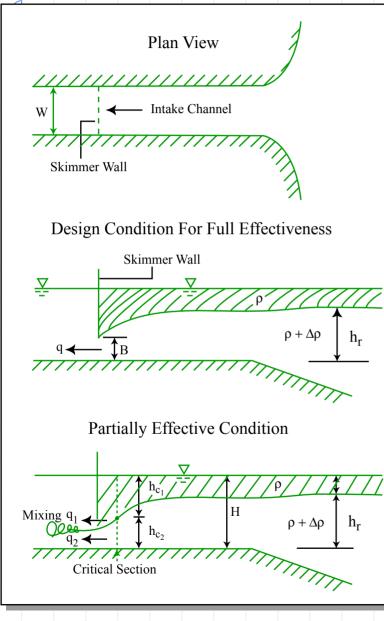
Measurements show 99% of pathogens killed for $t^* = 2$ days $(c_{out}/c_{in} = 0.01)$. Use Eq. 5.40 to estimate first order removal rate (k) for plausible values of Pe & compare with plug flow reactor



Continuous SODIS, cont'd

Pe	k (d-1)	C _{out} /c _{in} (Plug Flow)	C _{out} (Dispersed) C _{out} (Plug flow)
16	2.92	0.0029	3.45
32	2.62	0.0053	1.89
64	2.47	0.0072	1.39
128	2.38	0.0086	1.16
00	2.30	0.0100	1.00

Skimmer walls



Selective withdrawal of water from density stratified tank or reservoir

Withdrawal of lower layer water tends to "suck down" upper layer. Bernoulli's equation used to compute max flow, draw down

Maximum flow per unit width

 $q_{c} = \left[g' \left(\frac{2}{3}h_{r}\right)^{3} \right]^{2}$ $F_{r} = \frac{q}{\sqrt{\left(g'h_{r}^{3}\right)}} = \left(\frac{2}{3}\right)^{3/2}$

For larger F_r, partially effective

Figure by MIT OCW.

Partially-effective skimmer wall

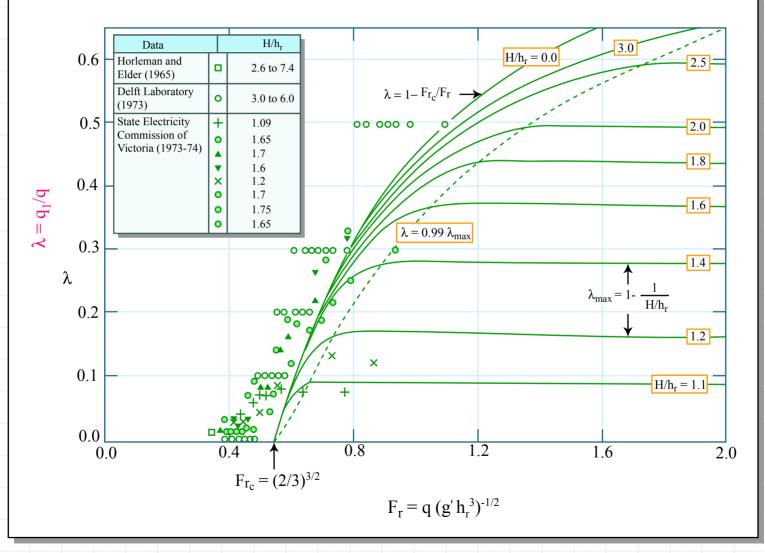


Figure by MIT OCW.

Jirka (1979)