
5 Reactor Vessels

Motivation
Fully-mixed reactors
Single & multiple tanks with pulse, step and 
continuous inputs
Dispersed flow reactors with pulse and 
continuous inputs
Examples



Introduction
m&

Qin Qout

A tank, reservoir, pond or reactor with controlled in/out flow

If Qin = Qout = Q then tres = τ = t* = V/Q

Used interchangeably
Generally more interest in what comes out than what’s inside reactor



Applications

Natural ponds and reservoirs
Engineered systems (settling basins, 
constructed wetlands, combustion 
facilities, chemical reactors, thermo-
cyclers…)
Laboratory set-ups: simple configurations 
with known mixing so you can 
predict/control the fate processes



Wastewater Treatment Plants

Secondary settling

Primary settling

Waste stabilization



Constructed Wetlands

Cell 6

Cell 7

Cell 5

Cell 12



Potash Evaporation Ponds

Southern shoreline Dead Sea



Classification

Flow: continuous flow or batch
Spatial structure: well-mixed or 1-, 2-, 
3-D
Loading: continuous, intermittent (step) 
or instantaneous (pulse)
Single reactor or reactors-in-series

Initially look at single continuously stirred tank reactor 
(CSTR)



Well-mixed tank, arbitrary input
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Well-mixed tank
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Roadmap to solutions (3x2)
inincQm =& inincQm =& inincQm =&

Inputs

t t t

Pulse Step Continuous

Reactors

Single Multiple



Pulse input to single tank
inincQm =&

Pulse

May have practical significance—e.g. instantaneous spill
More commonly used as a diagnostic; Produces stronger 
gradients than other types of inputs



Pulse input, single tank, cont’d
inincQm =&
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Know t* and co;

Plot c/co vs t/t*

Determine kt* = > k

WE 5-2



Pulse input, single tank, cont’d
inin cQm =&

Pulse

Special cases:General case:

No flow; 
batch reactor
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In practice never exactly well-
mixed

Data versus theory tells 
how close to well mixed
Ways to mix

Directed discharge and 
intake
Baffles
Stirrers

May need to avoid over-
mixing (benthic flux 
chambers)

White, (1974) Figure by MIT OCW.
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Benthic Flux Chambers



Slight diversion: Residence time 
properties of reactor vessels

Not necessarily well-mixed

But known residence time
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Residence time distribution

Unit impulse response



Recall from Chapter 4
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RTD, cont’d
0th and 1st moments of normalized distribution 
(cout/co vs t/t*) are both unity

For well mixed tank, k=0 (CSTR)
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Pulse input to tanks-in-series
inincQm =&
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Pulse input to tanks-in-series

Area under curve and center 
of mass are both one
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Advantages of Plug Flow?



Advantages of Plug Flow?

e-kt (this function multiplies k=0 sol’n)1

t/nt*
10.5 1.5

Everything “cooks” the same time.  The mean residence 
time of a water parcel is always nt* (by definition) but 
under plug flow all parcels reside for nt*

This advantage obviously applies for continuous and step 
injections as well



Step input, single and multiple
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Multiple reactors, k = 0
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WE 5-3 Thermal storage tank
Day
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Night

Collector

DemandT1

t = start of the “day”) 
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⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

++++−=
−
− −

−

)!1(
)(...

2
)(11

)*(
1)( 12

12

1

n
ttte

tTT
TtT n

t
n

κκκ
κ

κ

Percent of theoretical cooling (or 
heating) potential, a measure of 
hydraulic efficiency of storage system

dt
T

tTT
nt

tR
t

∫ ∆
−

=
0

0

2 )(
*
%100)(



Thermal storage tank, cont’d
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Continuous input single & multiple
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From step input solutions for large t
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Continuous input, single tank



Continuous input single & multiple

n
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= (knt* = 1; constant total volume)

n kt* cout/cin

1 1 0.5

2 0.5 0.44

5 0.2 0.40

10 0.1 0.386

100 0.01 0.37

infinity 0 e-1



Dispersed flow reactor

W

x L

Engineer delayed response (--> plug flow) by making the reactor long 
& narrow. Density stratification should also be minimal (see Sect 5.4.1)
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Pulse input

Qin = Qout = const; A = const; k = 0 and pulse input at x =0
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Dispersed flow, pulse input

A lot like tanks-in-
series
Greater n or Pe
(lower EL) => plug 
flow
Pe ~ 2n-1 ( WE 5-5)
Elongation 
sometimes done 
with baffles
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Dispersed flow vs tanks-in-series
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Dispersed flow reactor

Area under curve and center 
of mass again are both one
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(Idealized) effect of central baffle
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Can you place the UIR 
(A-D) with the schematic 
cooling pond (I-IV)?

Cerco, 1977
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WE5-5 Dispersed flow vs
tanks-in-series

River: L = 10 km; B = 20 m; H = 1 m; Q = 10m3/s; S = 10-4

What are equivalent values of Pe and n?

smgHSu /032.010110 4
* =⋅⋅=≅ −

u = Q/BH  =0.5 m/s

*
22 /01.0 HuBUEL = sm /30)032.01/(205.001.0 222 ≅⋅⋅⋅≅

16730/105.0/ 4 =⋅== LEULPe

.832/ =≅ Pn
A finite difference model using upwind differencing would want 
to use a spatial grid size of order 104/83 or 120 m



Dispersed flow, continuous input
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Dispersed flow, continuous input
Solution (0 < x < L)
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Solution (0 < x < L)

Plug flow: 
greater loss at 
small x 
lower 
concentration 
at large x

Note:

c(x=0) < cin



At outlet
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WE 5-6 Continuous solar 
disinfection

SODIS: simple household 
treatment technology for 
destroying pathogens 
using UV and 
temperature
Pioneered by EAWAG, 
SANDEC and others; 
studied by former MEng 
students in Nepal
Continuous (or semi-
continuous) operation 
more convenient than 
discrete bottles



Dispersed flow reactor response to 
step input (eq 2.104), k = 0

Cout/Cin vs t/t* for various values of Pe (2, 4, 8, 16, 
32, 64, 128) compared with measurements 

(connected dots)

Pe= 2

Pe = 128

Xanat’s SC-
SODIS

Infer 16 < 
Pe < 128

Flores (2003)



Continuous SODIS, cont’d
Measurements show 99% of pathogens killed for t* = 2 days 
(cout/cin = 0.01).  Use Eq. 5.40 to estimate first order removal rate 
(k) for plausible values of Pe & compare with plug flow reactor

0.01

Example

Pe = oo, cL/cin = 
cout/cin = 0.01

kt* = 4.6, k = 2.3 d-1



Continuous SODIS, cont’d

Pe k (d-1) Cout/cin

(Plug Flow)
Cout (Dispersed)
Cout (Plug flow)

16 2.92 0.0029 3.45

32 2.62 0.0053 1.89

64 2.47 0.0072 1.39

128 2.38 0.0086 1.16

oo 2.30 0.0100 1.00



Selective withdrawal of water 
from density stratified tank or 
reservoir

Withdrawal of lower layer water 
tends to “suck down” upper 
layer.  Bernoulli’s equation used 
to compute max flow, draw down

Skimmer walls
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Partially-effective skimmer wall
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