3 Spatial Averaging

$\diamond 3$-D equations of motion
\diamond Scaling $=>$ simplifications
\diamond Spatial averaging
*Shear dispersion
\diamond Magnitudes/time scales of
diffusion/dispersion
$\stackrel{*}{ }$ Examples

Navier-Stokes Eqns

Conservative form momentum eqn; x-component only

1 " storage" or local acceleration
2 advective acceleration
3 Coriolis acceleration [$f=$ Coriolis param $=2 \omega \sin (\theta), \theta=$ latitude]
4 pressure gradient
5 viscous stress

Turbulent Reynolds Eqns

$$
\begin{aligned}
& u=\bar{u}+u^{\prime} \text {, etc } \quad(\bar{u}=\text { time average }) \quad \text { Insert \& time average (over bar) } \\
& \frac{\partial}{\partial x}\left[\left(\bar{u}+u^{\prime}\right)\left(\bar{u}+u^{\prime}\right)\right]=\frac{\partial}{\partial x} \bar{u}^{2}+\frac{\partial}{\partial x} \overline{u^{\prime 2}} \quad \text { e.g., } x \text {-component; term } 2 \\
& \frac{\partial \bar{u}}{\partial x}+\frac{\partial \bar{v}}{\partial y}+\frac{\partial \bar{w}}{\partial z} \\
& \text { Continuity } \\
& \int_{1}^{\frac{\partial \bar{u}}{\partial t}+\frac{\partial}{\partial x}\left(\bar{u}^{2}\right)+\frac{\partial}{\partial y}(\bar{u} \bar{v})+\frac{\partial}{\partial z}(\overline{u w})-f \bar{v} \quad \text { x-momentum }} \begin{array}{l}
2 \mathrm{a}
\end{array} \\
& =-\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x}+\frac{\partial}{\partial x}\left(v \frac{\partial \bar{u}}{\partial x}-\overline{u^{\prime 2}}\right)+\frac{\partial}{\partial y}\left(v \frac{\partial \bar{u}}{\partial y}-\overline{u^{\prime} v^{\prime}}\right)+\frac{\partial}{\partial z}\left(v \frac{\partial \bar{u}}{\partial z}-\overline{u^{\prime} w^{\prime}}\right) \\
& \begin{array}{lll}
4 & 5 & 2 b
\end{array}
\end{aligned}
$$

Specific terms

Term 2a: could subtract \bar{U} times continuity eqn

$$
=\bar{u}\left[\frac{\partial \bar{u}}{\partial x}+\frac{\partial \bar{v}}{\partial y}+\frac{\partial \bar{w}}{\partial z}\right]
$$

$\bar{u} \frac{\partial \bar{u}}{\partial x}+\bar{v} \frac{\partial \bar{u}}{\partial x}+\bar{w} \frac{\partial \bar{u}}{\partial x} \quad$ NC form of momentum eqn (term 2)
Terms $5+2 \mathrm{~b}$
x-comp of turbulent shear stress
$v \frac{\partial \bar{u}}{\partial x}-\overline{u^{\prime 2}}=\tau_{x x} \cong{ }_{\cong} u^{u^{\prime 2}} \cong 2 \varepsilon_{x x} \frac{\partial \bar{u}}{\partial x}$
$v \frac{\partial \bar{u}}{\partial y}-\overline{u^{\prime} v^{\prime}}=\tau_{x y} \cong-\overline{u^{\prime} v^{\prime}} \cong \varepsilon_{x y}\left(\frac{\partial \bar{u}}{\partial y}+\frac{\partial \bar{v}}{\partial x}\right)$
$v \frac{\partial \bar{u}}{\partial z}-\overline{u^{\prime} w^{\prime}}=\tau_{x z} \cong-\overline{u^{\prime} w^{\prime}} \cong \varepsilon_{x z}\left(\frac{\partial \bar{u}}{\partial z}+\frac{\partial \bar{w}}{\partial x}\right)$
$\varepsilon_{x x}, \varepsilon_{x y}, \varepsilon_{x z}$ are turbulent (eddy) kinematic viscosities resulting from closure model (like $\left.E_{x x}, E_{x y}, E_{x z}\right)$

Specific terms, cont'd

Similar eqns for y and z except z has gravity.
For nearly horizontal flow ($w \sim 0$), z-mom $=>$ hydrostatic

$$
\begin{aligned}
& 0=-\frac{1}{\rho} \frac{\partial \bar{p}}{\partial z}-g \\
& \bar{p}=p_{a}+\int_{z}^{\eta} \rho g d z
\end{aligned}
$$

Use in x and y eqns

Specific terms, cont'd

Term 4

$$
\begin{aligned}
\frac{\partial \bar{p}}{\partial x} & =\frac{\partial}{\partial x}\left[p_{a}+\int_{z}^{\eta} \rho g d z\right] \\
= & \frac{\partial p_{a}}{\partial x}+\frac{\partial \eta}{\partial x} \rho_{s} g+\int_{z}^{\eta} \frac{\partial \rho}{\partial x} g d z \\
& 4 \mathrm{a} \quad 4 \mathrm{~b} \quad 4 \mathrm{c}
\end{aligned}
$$

4a atmospheric pressure gradient (often negligible)
4b barotropic pressure gradient (barotropic $=>\rho=\rho_{\mathrm{s}}=$ const)
4 c baroclinic pressure gradient (baroclinic $=>$ density gradients; often negligible)

Simplification

Neglect $\varepsilon_{x x} ; \varepsilon_{x y}=\varepsilon_{h} ; \varepsilon_{z x}=\varepsilon_{z}$
Neglect all pressure terms except barotropic
And drop over bars

$$
\begin{array}{cccc}
\frac{\partial u}{\partial t}+\frac{\frac{\partial}{\partial x}\left(u^{2}\right)+\frac{\partial}{\partial v}(u v)+\frac{\partial}{\partial z}(u w)}{2 \mathrm{a}}-f v & -g \frac{\partial \eta}{\partial x}+\frac{\partial}{\partial y}\left(\varepsilon_{h} \frac{\partial u}{\partial y}\right)+\frac{\partial}{\partial z}\left(\varepsilon_{z} \frac{\partial u}{\partial z}\right) \\
1 & 3 & 4 \mathrm{~b} & 2 \mathrm{~b} 1
\end{array}
$$

Contrast with mass transport eqn

$$
\underbrace{\frac{\partial \bar{c}}{\partial t}+\underbrace{\frac{\partial}{\partial x}(u c)+\frac{\partial}{\partial y}(v c)+\frac{\partial}{\partial z}(w c)}_{2 \mathrm{a}}=\underbrace{\frac{\partial}{\partial x}\left(E_{x} \frac{\partial c}{\partial y}\right)+\frac{\partial}{\partial y}\left(E_{y} \frac{\partial c}{\partial y}\right)}_{2 \mathrm{~b} 1}+\frac{\partial}{\partial z}\left(E_{z} \frac{\partial c}{\partial z}\right) \pm \sum r .}_{1}
$$

Pressure gradient (4) in momentum eqn => viscosity (2b) not always important to balance advection (2a); depends on shear (separation). For mass transport, diffusivity (2b) always needed to balance advection (2a)

Comments

* 3D models include continuity + three components of momentum eq (z may be hydrostatic approx) +n mass transport eqns
- Above are primitive eqs (u, v, w); sometimes different form, but physics should be same
- Sometimes further simplifications
- Spatial averaging => reduced dimensions

Further possible simplifications

Neglect terms 2a and 2b1
$\frac{\partial u}{\partial t}+-f v=-g \frac{\partial \eta}{\partial x}+\frac{\partial}{\partial z}\left(\varepsilon_{z} \frac{\partial u}{\partial z}\right) \quad \begin{aligned} & \text { Linear shallow } \\ & \text { water wave eqn }\end{aligned}$
Also neglect term 1
$-f v=-g \frac{\partial \eta}{\partial x}+\frac{\partial}{\partial z}\left(\varepsilon_{z} \frac{\partial u}{\partial z}\right)$
Steady Ekman flow

Also neglect term 2b2
$-f v=-g \frac{\partial \eta}{\partial x}$
Geostrophic flow

z-vertical

Spatial averaging
 3-D equations

2-D vertical average
$\phi(x, y, t)$ shallow coastal; estuary

1-D vertical \& lateral average
$\phi(x, t)$ river; narrow/shallow estuary

2-D lateral average
$\phi(x, z, t)$ long reservoir; deep estuary/fjord

1-D horizontal average
$\phi(z, t)$ deep lake/reservoir ocean

Comments

\diamond Models of reduced dimension achieved by spatial averaging or direct formulation (advantages of both)

- Demonstration of vertical averaging (integrate over depth then divide by depth, leading to 2D depth-averaged models)
- Discussion of cross-sectional averaging (river models)

Vertical Integration => 2D

 (depth-averaged) eqns

Vertical Integration, cont'd

$$
\overline{\bar{u}}(x, y, t)=\frac{1}{H} \int_{-h}^{\eta} u(x, y, z, t) d z
$$

In analogy with Reynolds averaging, decompose velocities and concentrations into $\overline{\bar{u}}+u^{\prime \prime}, \bar{c}+c^{\prime \prime}$, etc. and spatially average

Depth-averaged eqns

Continuity

$$
\begin{aligned}
& \frac{\partial \eta}{\partial t}+\frac{\partial}{\partial x}(\overline{\bar{u}} H)+\frac{\partial}{\partial y}(\overline{\bar{v}} H)=0 \\
& \quad \text { from } \frac{\partial w}{\partial z}+\text { kinematic surface bc of } \frac{\partial u}{\partial x}, \frac{\partial v}{\partial y}
\end{aligned}
$$

Mass and Momentum straight forward except for NL terms

$$
\begin{aligned}
& \int_{-h}^{\eta} \frac{\partial}{\partial x}\left(u^{2}\right) d z=\frac{\partial}{\partial x} \int\left(\overline{\bar{u}}+u^{\prime \prime}\right)\left(\overline{\bar{u}}+u^{\prime \prime}\right) d z=\frac{\partial}{\partial x} \int_{\overline{u^{2}}}{ }^{2} d z+2 \int \overline{\bar{y}} u^{\prime \prime} d z+\frac{\partial}{\partial x} \int u^{\prime \prime} d z \\
& =\frac{\partial}{\partial x}\left(\overline{\bar{u}}^{2} H\right)+\underbrace{\frac{\partial}{\partial x}\left(\overline{\overline{u^{\prime 2}}} H\right)} \\
& \quad \underbrace{}_{\text {momentum dispersion }} \\
& \int_{-h}^{\eta} \frac{\partial}{\partial x}(u c) d z=\frac{\partial}{\partial x}(\overline{\bar{u} \bar{c}} H)+\underbrace{\frac{\partial}{\partial x}\left(\overline{\left.\overline{u^{\prime \prime} c^{\prime \prime}} H\right)}\right.}_{\text {mass dispersion }}
\end{aligned}
$$

Depth-averaged eqns, cont'd

x-momentum

$$
\frac{\partial}{\partial t}(\overline{\bar{u}} H)+\frac{\partial}{\partial x}\left(\overline{\bar{u}}^{2} H\right)+\frac{\partial}{\partial y}(\overline{\bar{u} \bar{v}} H)-f \overline{\bar{v}} H=-g H \frac{\partial \eta}{\partial x}
$$

$$
+\underbrace{\frac{\partial}{\partial x}\left[H \varepsilon_{L} \frac{\partial \overline{\bar{u}}}{\partial x}\right]}+\frac{\partial}{\partial y}[\underbrace{\left.H \varepsilon_{T} \frac{\partial \overline{\bar{v}}}{\partial x}\right]}+\frac{\tau_{s x}}{\rho}-\frac{\tau_{b x}}{\rho}
$$

$$
\frac{\partial}{\partial x}\left[H \overline{\overline{\varepsilon_{x} \frac{\partial u}{\partial x}}}-\overline{\overline{u^{\prime 2}}} H\right] \quad \frac{\partial}{\partial y}\left[H \overline{\overline{\varepsilon_{y} \frac{\partial u}{\partial y}}}-\overline{\overline{u " v "}} H\right]
$$

Depth-ave long. diff

Long. dispersion

Depth integrated eqns, cont'd

Mass Transport

$$
\frac{\partial}{\partial t}(\overline{\bar{c}} H)+\frac{\partial}{\partial x}(\overline{\bar{u} \bar{c}} H)+\frac{\partial}{\partial y}(\overline{\bar{c}} \overline{\bar{c}} H)=
$$

$$
+\underbrace{\frac{\partial}{\partial x}\left[H E_{L} \frac{\partial \overline{\bar{c}}}{\partial x}\right.}]+\underbrace{\frac{\partial}{\partial y}\left[H E_{T} \frac{\partial \overline{\bar{c}}}{\partial y}\right]}+\left.E_{z} \frac{\partial c}{\partial z}\right|_{S}-\left.E_{z} \frac{\partial c}{\partial z}\right|_{b}
$$

$$
\frac{\partial}{\partial x}\left[H \overline{\overline{E_{x} \frac{\partial c}{\partial x}}} \overline{\overline{\partial x}} \overline{u^{\prime \prime}} H\right] \quad \frac{\partial}{\partial y}\left[H \overline{\overline{E_{y} \frac{\partial c}{\partial y}}} \overline{\overline{\partial "} c^{\prime \prime}} H\right]
$$

Depth-ave
Long dispersion long. diff

Comments

$\diamond \varepsilon_{L^{\prime}} \varepsilon_{\mathrm{T}}, \mathrm{E}_{\mathrm{L}}, \mathrm{E}_{\mathrm{T}}$ are longitudinal and transverse momentum and mass shear viscosity/dispersion coefficients.
$\otimes \varepsilon_{L} \gg \varepsilon_{T}$ and $E_{L} \gg E_{T}$, but relative importance depends on longitudinal gradients
\diamond Dispersion process represented as Fickian (explained shortly)

Boundary Conditions: momentum

$$
\frac{\tau_{s X}}{\rho}=C_{D} \sqrt{U_{w}^{2}+V_{w}^{2}} U_{w}
$$

$$
\begin{aligned}
& \frac{\tau_{b x}}{\rho}=C_{f} \sqrt{\overline{\bar{u}}^{2}+\overline{\bar{v}}^{2}} \overline{\bar{u}} \\
& \quad \cong u_{*}^{2}
\end{aligned}
$$

Surface shear stress due to wind (components U_{w} and V_{w}); external input (unless coupled air-water model)

Assumes $U_{w} \gg u_{s} ; C_{D}=d r a g$ coefficient $\sim 10^{-3}$ (more in Ch 8)

Bottom shear stress caused by flow (computed by model)

Different models for C_{f} (DarcyWeisbach f; Manning n; Chezy C), e.g., $\quad \tau_{b x}=\frac{f}{8} \rho \overline{\bar{u}}^{2}$

Boundary Conditions: mass transport

Boundary Conditions: mass transport

$$
-\left.E_{z} \frac{\partial c}{\partial z}\right|_{b}
$$

Benthic mass transfer (sediment-water exchange)

$-\left.\frac{\partial c}{\partial z}\right|_{b}=0$

No flux
(dye, salt)
$-\left.\frac{\partial c}{\partial z}\right|_{b}>0$
Source (pore
water diffusion)

Sink (trace metals bound by anoxic sediments)

Magnitude of terms: E_{z}

$$
E_{z} \sim u^{\prime} L \sim u_{*} H
$$

$$
u_{*}=\text { shear velocity }=\sqrt{\tau_{b} / \rho}=\sqrt{\frac{f}{8}} \overline{\bar{u}}, \quad f \cong 0.02 \Rightarrow u_{*}=0.05 \overline{\bar{u}}
$$

$$
\begin{array}{cl}
F_{g}=A \Delta x \rho S g \\
A S a & =F_{f}=\tau_{b} p \Delta x=\rho u_{*}^{2} p \Delta x \quad
\end{array} \begin{aligned}
& \text { Normal flow; gravity } \\
& \text { balances friction }
\end{aligned}
$$

$$
u_{*}^{2}=\frac{A S g}{p}=R_{H} S g ; \quad u_{*} \cong \sqrt{g H S}
$$

$$
R_{H}=A / p=\text { hydraulic radius } \cong H
$$

E_{z} cont'd

$\overline{\overline{E_{z}}}=0.07 u_{*} H$
Seen previously; from analogy of mass and momentum conservation (Reynolds' analogy) and log profile for velocity
$\tau_{v m} \cong \frac{0.5 H^{2}}{\overline{\overline{E_{z}}}} \cong \frac{0.5 H^{2}}{0.07 u_{*} H} \cong \frac{7 H}{u_{*}}$
$x_{v m}=\overline{\bar{u}} \tau_{v m} \cong \frac{7 H \overline{\bar{u}}}{u_{*}} ;$ if $\overline{\bar{u}}=20 u_{*} \quad x_{v m} \cong 150 H$

Transverse mixing: E_{T}

$$
\frac{E_{T}}{u_{*} H} \cong \begin{gathered}
0.08-0.24 \\
(\text { say } 0.15)
\end{gathered}
$$

Laboratory rectangular channels

$$
\frac{E_{T}}{u_{*} H} \cong 0.2-4.6
$$

$$
\tau_{t m} \cong \frac{0.5 B^{2}}{E_{T}}=\frac{0.5 B^{2}}{0.6 u_{*} H}
$$

Real channels (irregularities, braiding, secondary circulation)

$B=$ channel width

$$
x_{t m}=\frac{0.5 B^{2}}{0.6 u_{*} H} \overline{\bar{u}} ; \quad \text { if } \overline{\bar{u}}=20 u_{*}
$$

$$
=\frac{17 B^{2}}{H}
$$

Example

$$
B=100 \mathrm{~m}, \mathrm{H}=5 \mathrm{~m}, \mathrm{u}=1 \mathrm{~m} / \mathrm{s}
$$

$$
X_{v m}=150 H=750 \mathrm{~m}
$$

$$
x_{\mathrm{tm}}=17 \mathrm{~B}^{2} / \mathrm{H}=(17)(100)^{2} / 5=34,000 \mathrm{~m}
$$

(34 km)

It may take quite a while before concentrations can be considered laterally (transversally) uniform

Simplifications

Steady state; depth-averaged; no lateral advection or long dispersion; no boundary fluxes
$\frac{\partial}{\partial t}(\overline{\bar{c}} A)+\frac{\partial}{\partial x}(\overline{\bar{u}} \bar{c} H)+\frac{\partial}{\partial y}(\overline{\bar{y}} t H)=\frac{\partial}{\partial x}\left[H L_{L} \frac{\partial \overline{\bar{c}}}{\partial x}\right]+\frac{\partial}{\partial y}\left[H E_{T} \frac{\partial \overline{\bar{c}}}{\partial y}\right]+E /\left.\frac{\partial c}{\partial z}\right|_{s}-E /\left.z \frac{\partial c}{\partial z}\right|_{b}$
$H \overline{\bar{u}} \frac{\partial \overline{\bar{c}}}{\partial x}=\frac{\partial}{\partial y}\left(H E_{T} \frac{\partial c}{\partial y}\right)$
Uniform channel
$\frac{\partial \overline{\bar{c}}}{\partial x}=\underbrace{\frac{E_{T}}{\overline{\bar{u}}}} \frac{\partial^{2} c}{\partial y^{2}}$
const

Simple diffusion equation: solutions for continuous source at $x=y=0$

Holly and J irka (1986)

Note:
$x_{t m} \cong \frac{0.5 B^{2} \overline{\bar{u}}}{E_{T}}$

Figure by MIT OCW.

A useful extension: cumulative

discharge approach (Yotsukura \& Sayre, 1976)

Use cumulative discharge $\left(\mathrm{Q}_{\mathrm{c}}\right)$ instead of y as lateral variable

$$
\begin{aligned}
& Q_{c}=\int_{0}^{y} H\left(y^{\prime}\right) \overline{\bar{u}}\left(y^{\prime}\right) d y^{\prime} \\
& \frac{\partial \overline{\bar{c}}}{\partial x}=\frac{\partial}{\partial Q_{c}}[\underbrace{H^{2} \overline{\bar{u}} E_{T}}_{\mathbf{D}} \frac{\partial \overline{\bar{c}}}{\partial Q_{c}}]
\end{aligned}
$$

D behaves mathematically like diffusion coefficient, but has different dimensions; can be approximated as constant (cross-sectional average):
$\mathbf{D}=\frac{1}{Q} \int_{0}^{Q_{c}} H^{2} \overline{\bar{u}} E_{T} d Q_{c} \quad=>\quad \frac{\partial \overline{\bar{c}}}{\partial x}=\mathbf{D} \frac{\partial^{2} \overline{\bar{c}}}{\partial Q_{c}{ }^{2}} \quad \begin{aligned} & \text { Can use previous } \\ & \text { analysis }\end{aligned}$

Longitudinal Shear Dispersion

Why is longitudinal dispersion Fickian?
Original analysis by Taylor (1953, 1954) for flow in pipes; following for 2D flow after Elder (1959)

Longitudinal Shear dispersion

Why is longitudinal dispersion Fickian?
Original analysis by Taylor (1953, 1954) for flow in pipes; following for 2D flow after Elder (1959)

$\uparrow^{\bar{c}}$

Shear dispersion, cont'd

$\frac{\partial c}{\partial t}+u(z) \frac{\partial c}{\partial x}=\frac{\partial}{\partial x}\left(E_{x} \frac{\partial c}{\partial x}\right)+\frac{\partial}{\partial y}\left(E_{y} \frac{\partial c}{\partial y}\right)$
$u=\overline{\bar{u}}+u^{\prime \prime} ; \quad c=\overline{\bar{c}}+c^{\prime \prime} ; \quad x=\zeta+\overline{\bar{u}} t ; \quad t=\tau$
$\frac{\partial \overline{\bar{c}}}{\partial \tau}+\frac{\partial c^{\prime \prime}}{\partial \tau}+u^{\prime \prime} \frac{\partial \overline{\bar{c}}}{\partial \zeta}+u^{\prime \prime} \frac{\partial c^{\prime \prime}}{\partial \zeta}=\frac{\partial}{\partial \zeta}\left(E_{x} \frac{\partial \overline{\bar{c}}}{\partial \zeta}\right)+\frac{\partial}{\partial \zeta}\left(E_{x} \frac{\partial c^{\prime \prime}}{\partial \zeta}\right)+\frac{\partial}{\partial z}\left(E_{z} \frac{\partial \overline{\bar{c}}}{\partial z}\right)+\frac{\partial}{\partial z}\left(E_{z} \frac{\partial c^{\prime \prime}}{\partial z}\right)$
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
5 6

7

Shear dispersion, cont'd

a) $L \gg H=>$ longitudinal dispersion \ll vertical $5,6 \ll 7$
b) $\overline{\bar{c}} \gg c^{\prime \prime} \Rightarrow \partial c^{\prime \prime} / \partial \zeta \ll \partial \overline{\bar{c}} / \partial \zeta$
$4 \ll 3$
c) $x \gg L \quad=\quad \partial / \partial \tau \ll u^{\prime \prime} \partial / \partial \zeta$
$1,2 \ll 3$
$\frac{\partial \overline{\bar{c}}}{\partial \tau} /+\frac{\partial c^{\prime \prime}}{\partial \tau}+u^{\prime \prime} \frac{\partial \overline{\bar{c}}}{\partial \zeta}+u^{\prime \prime} \frac{\partial c^{\prime \prime}}{\partial \zeta}=\frac{\partial}{\partial \zeta}\left(E / \frac{\partial \overline{\bar{c}}}{\partial \zeta}\right)+\frac{\partial}{\partial \zeta}\left(E / \frac{\partial c^{\prime \prime}}{\partial \zeta}\right)+\frac{\partial}{\partial z}\left(E_{z} \frac{\partial c^{\prime \prime}}{\partial z}\right)$
1
2
3
4
5
6

Shear dispersion, cont'd

Differential advection balanced by transverse diffusion

We want $-\overline{u^{\prime \prime} c^{\prime \prime}}$ and to show that it is $\sim E_{L} \frac{\partial \overline{\bar{c}}}{\partial x}$

Integrate over z twice to get c"; multiply by u"; integrate again and divide by H (depth average); add minus sign

Shear dispersion, cont'd

$$
\begin{gathered}
-\overline{\overline{u^{\prime \prime} c^{\prime \prime}}}=-\frac{1}{H} \int_{0}^{H} u^{\prime \prime} c^{\prime \prime} d z=-\frac{1}{H} \frac{\partial \overline{\bar{c}}}{\partial \zeta} \int_{0}^{H} u^{\prime \prime} \int_{0}^{z} \frac{1}{E_{z}} \int_{0}^{z} u^{\prime \prime} d z d z d z \\
E_{L}=I_{h} \frac{H^{2} \overline{\overline{E_{z}}} \overline{\overline{u^{\prime \prime}}}}{} \begin{array}{l}
\begin{array}{l}
I_{h}=\text { dimensionless triple integration } \sim 0.07 \\
u^{\prime \prime} \sim u_{*} ;
\end{array} \\
\overline{\overline{E_{z}}} \sim u_{*} H
\end{array}
\end{gathered}
$$

$E_{L}=5.9 u_{*} H \quad$ Elder (1959) using log profile for $u^{\prime \prime}(z)$
$E_{L}=10 u_{*} r_{0} \quad$ Taylor (1954) turbulent pipe flow ($r_{0}=$ radius)

Use E_{L} to compute σ_{L} or use measured σ_{L} to deduce E_{L}

Comments

* E_{L} involves differential advection ($u^{\prime \prime}$) with transverse mixing in direction of advection gradient (E_{z})
- $E_{L} \sim 1 / E_{z}$; perhaps counter-intuitive, but look at time scales:

$$
E_{L} \sim \frac{H^{2} \overline{\overline{u^{\prime 2}}}}{\substack{\text { Recall Taylor's } \\ \text { Theorem }}} \quad D \sim \overline{u^{2}} \int_{0}^{\infty} R(\tau) d \tau
$$

A thought experiment

Consider the trip on the Mass Turnpike from Boston to the NY border (~ 150 miles).

Assume two lanes in each direction, and that cars in left lane always travel 65 mph, while those in the right Iane travel 55 mph.

At the start 50 cars in each lane have their tops painted red and a helicopter observes the "dispersion" in their position as they travel to NY

1) How does this dispersion depend on the frequency of lane changes?
2) Would dispersion increase or decrease if there were a third (middle) lane where cars traveled at 60 mph ?

Thought experiment, cont'd

$$
E_{L} \sim \frac{H^{2}}{\overline{\overline{E_{z}}}} \overline{\overline{\left(u^{\prime \prime}\right)^{2}}}
$$

What are the analogs of $\mathrm{H}, \mathrm{E}_{\mathrm{z}}$ and $\mathrm{u}^{\prime \prime}$

Thought experiment, cont'd

$$
E_{L} \sim \frac{H^{2}}{E_{z}} \overline{\left(u^{\prime \prime}\right)^{2}}
$$

H ~ number of lanes
$E_{z} \sim$ frequency of lane changing
u" ~ difference between average and lane-specific speed

1) Decreasing E_{z} increases dispersion (as long as there is some E_{z})
2) Increasing lanes increases H, decreases mean square u ",

$$
\begin{aligned}
& \overline{\left(u^{\prime \prime}\right)^{2}}=\frac{(65-60)^{2}+(55-60)^{2}}{2}=50 / 2 \quad(2 \text { lanes }) \\
& \overline{\left(u^{\prime \prime}\right)^{2}}=\frac{(65-60)^{2}+(60-60)^{2}+(55-60)^{2}}{3}=50 / 3 \quad(3 \text { lanes })
\end{aligned}
$$

If E_{z} is constant, net effect is increase in E_{L} by $(3 / 2)^{2}(2 / 3)=50 \%$

1D (river) dispersion

$u=\overline{\bar{u}}+u^{\prime \prime} ; \quad c=\overline{\bar{c}}+c^{\prime \prime}$
$c=\frac{1}{A} \int_{A} c d A \quad$ Insert into GE and spatial average
Continuity
$\frac{\partial A}{\partial t}+\frac{\partial}{\partial x}(A u)=q_{L} \quad q_{L}=$ lateral inflow/length $\left[L^{2} / T\right]$
Mass Conservation (conservative form)

$$
\frac{\partial}{\partial t}(A c)+\frac{\partial}{\partial x}(A u c)=\frac{\partial}{\partial x}[\underbrace{A \overline{\overline{E_{x}} \frac{\partial c}{\partial x}}-A \overline{\overline{u^{\prime \prime}}}}_{A E_{L} \frac{\partial c}{\partial x}}]+A r_{i}+q_{L} c_{L}
$$

1D (river) dispersion, cont'd

NC form from conservative equation minus c times continuity

$$
\begin{aligned}
\frac{\partial}{\partial t}(A c) & +\frac{\partial}{\partial x}(A u c)=\frac{\partial}{\partial x}\left[A \overline{\overline{E_{x}}} \frac{\partial c}{\partial x}-A \overline{\overline{u^{\prime \prime}} c^{\prime \prime}}\right]+A r_{i}+q_{L} c_{L} \\
& -c \cdot\left\{\frac{\partial A}{\partial t}+\frac{\partial}{\partial x}(A u)=q_{L}\right\}
\end{aligned}
$$

Mass Conservation (NC form)

$$
\frac{\partial c}{\partial t}+u \frac{\partial c}{\partial x}=\frac{1}{A} \frac{\partial}{\partial x}\left(A E_{L} \frac{\partial c}{\partial x}\right)+r_{i}+\frac{q_{L}}{A}\left(c_{L}-c\right)
$$

Note: if $c_{L}>c, c$ increases;
if $c_{L}<c, c$ decreases (dilution)

E_{L} for rivers

Elder formula accounts for vertical shear (OK for depth averaged models that resolve lateral shear); here we need to parameterize lateral and vertical shear. Analysis by Fischer (1967)

$$
\begin{aligned}
& -\overline{\overline{u^{\prime \prime} c^{\prime \prime}}}=\underbrace{I_{b} \frac{B^{2} \overline{E_{T}}}{\overline{u^{\prime 2}}} \frac{\partial \overline{\bar{c}}}{\partial x}} \\
& E_{L} \\
& B=\text { river width } \\
& \mathrm{E}_{\mathrm{T}}=\text { transverse dispersion coefficient } \\
& I_{b}-N D \text { triple integration (across } A \text {) } \sim 0.07
\end{aligned}
$$

Same form as Elder, but now time scale is $\mathrm{B}^{2} / \mathrm{E}_{\mathrm{T}}$, rather than $\mathrm{H}^{2} / \mathrm{E}_{\mathrm{z}}$. $E_{T}>E_{z^{\prime}}$, but $B^{2} \gg H^{2}=>$ this E_{L} is generally much larger

E_{L} for rivers, cont'd

Using approximations for $\mathrm{u}^{\prime \prime}, \mathrm{E}_{\mathrm{T}}$, etc.

$$
E_{L} \cong 0.01 \frac{\overline{\bar{u}}^{2} B^{2}}{u_{*} H}
$$

Fischer (1967); useful for reasonably straight, uniform rivers and channels or

$$
\frac{E_{L}}{u_{*} H} \cong 0.01\left(\frac{\overline{\bar{u}}}{u_{*}}\right)^{2}\left(\frac{B}{H}\right)^{2}
$$

if $\overline{\bar{u}} \cong 20 u_{*}$

$$
\frac{E_{L}}{u_{*} H} \cong 4\left(\frac{B}{H}\right)^{2}
$$

Magnitude of terms, revisited

$$
\frac{\overline{\overline{E_{z}}}}{\overline{u_{*} H}} \cong 0.07
$$

Vertical Diffusion

$$
\frac{E_{T}}{u_{*} H} \cong 0.6
$$

Transverse Diffusion in Channels

$$
\frac{E_{L}}{u_{*} H} \cong 6
$$

$$
\frac{E_{L}}{u r} \cong 10 \quad \text { Longitudinal Dispersion (turbulent pipe flow) }
$$

$$
\frac{E_{L}}{u_{*} H} \cong 0.01\left(\frac{\overline{\bar{u}}}{u_{*}}\right)^{2}\left(\frac{B}{H}\right)^{2} \text { Longitudinal Dispersion (rivers) }
$$

Previous Example, revisited

$B=100 \mathrm{~m}, \mathrm{H}=5 \mathrm{~m}, \mathrm{u}=1 \mathrm{~m} / \mathrm{s}, \mathrm{u}_{*}=0.05 \mathrm{u}=0.05$
$E_{L}=\frac{0.01 u^{2} B^{2}}{u_{*} H}=\frac{(0.01)(1)^{2}(100)^{2}}{(0.05)(5)}=400 \mathrm{~m}^{2} / \mathrm{s}$
$\frac{d}{d t} \sigma_{x}^{2}=2 E_{L} \quad=>\quad \begin{array}{r}\text { Gaussian Distribution; but only } \\ \text { after cross-sectional mixing }\end{array}$
$x_{t m}=\frac{0.5 B^{2}}{E_{T}} u$

Previous Example, revisited

$B=100 \mathrm{~m}, \mathrm{H}=5 \mathrm{~m}, \mathrm{u}=1 \mathrm{~m} / \mathrm{s}, \mathrm{u}_{*}=0.05 \mathrm{u}=0.05$
$E_{L}=\frac{0.01 u^{2} B^{2}}{u_{*} H}=\frac{(0.01)(1)^{2}(100)^{2}}{(0.05)(5)}=400 \mathrm{~m}^{2} / \mathrm{s}$
$\frac{d}{d t} \sigma_{x}^{2}=2 E_{L} \quad=>\quad \begin{array}{r}\text { Gaussian Distribution; but only } \\ \text { after cross-sectional mixing }\end{array}$
$x_{t m}=\frac{0.5 B^{2}}{E_{T}} u$

4 times less if point source in mid-stream

Previous Example, revisited

$B=100 \mathrm{~m}, \mathrm{H}=5 \mathrm{~m}, \mathrm{u}=1 \mathrm{~m} / \mathrm{s}, \mathrm{u}_{*}=0.05 \mathrm{u}=0.05$
$E_{L}=\frac{0.01 u^{2} B^{2}}{u_{*} H}=\frac{(0.01)(1)^{2}(100)^{2}}{(0.05)(5)}=400 \mathrm{~m}^{2} / \mathrm{s}$
$\frac{d}{d t} \sigma_{x}{ }^{2}=2 E_{L} \quad=>\quad \begin{array}{r}\text { Gaussian Distribution; but only } \\ \text { after cross-sectional mixing }\end{array}$
$x_{t m}=\frac{0.5 B^{2}}{E_{T}} u$

Less still if distributed across channel (but not zero)

Storage zones

Real channels often have backwater (storage) zones that increase dispersion and give long tails to c(t) distribution

Storage zones, cont'd

1) $\frac{\partial c}{\partial t}+u \frac{\partial c}{\partial x}=\frac{1}{A} \frac{\partial}{\partial x}\left(A E_{L} \frac{\partial c}{\partial x}\right)+\frac{q_{L}}{A}\left(c_{L}-c\right)+\alpha\left(c_{s}-c\right) \quad$ Main channel
2) $\frac{d c_{s}}{d t}=-\alpha \frac{A}{A_{s}}\left(c_{s}-c\right)$

Storage zone
$A(x)=$ cross-sectional area of main channel
$A_{s}=$ cross-sectional area of storage zone
$\alpha=$ storage zone coefficient (rate, t^{1}; like q_{L} / A)
If you multiply 1) by A and 2) by A_{5}, the exchange terms are $\alpha A\left(c_{s}-c\right)$ and $-\alpha A\left(c_{s}-c\right)$

Really the same process as longitudinal dispersion, but instead of cars in either fast or slow lane, some are in the rest stop.

