
2 Turbulent Diffusion

Turbulence
Turbulent (eddy) diffusivities
Simple solutions for instantaneous and 
continuous sources in 1-, 2-, 3-D.
Boundary Conditions
Fluid Shear
Field Data on Horizontal & Vertical Diffusion
Atmospheric, Surface water & GW plumes



Turbulence

Turbulent flow (unstable, chaotic) vs
laminar flow (stable)
Turbulent sources: internal (grid, wake), 
boundary shear, wind shear, convection
Turbulent mixing caused by water 
movement, not molecular diffusion
Two-way exchange--contrast with initial 
mixing (one-way process)



Initial mixing
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Kinetic Energy Spectrum

ηππ /2/2 L

Sk = kinetic energy density

k = 2π/λ = wave number

Sk~ε2/3k-5/3

mean flow turbulence

could also use frequency

implied gap

Sk = kinetic energy/mass-wave number [U2/L-1 = L3/T2]

L = size of largest eddy

ε = energy dissipation rate [U2/T = U2/(L/U) = U3/L = L2/T3]

η = Kolmogorov (inner) scale = (ν3/ε)1/4 [L]



Turbulent Averaging
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Conservative mass transport eq.

Both q and c fluctuate on scales 
smaller than environmental interest

Therefore average. Two choices: time 
average, ensemble average; 
equivalent if ergotic.
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Turbulent Averaging, cont’d
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Turbulent Diffusion
Inst. flux (M/L2-T)
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Eddy Diffusivity LuE '~

Structurally similar to molecular diffusivity D, but 
much larger (due to fluid motion, not molecular 
motion) => often drop D
E is a tensor (9 components, Exx, Exy, etc.) but often 
treated as a vector (Ex, Ey, Ez)
Depends on nature of turbulence; in general neither 
isotropic nor uniform
Eddy diffusivity ~ conductivity ~ viscosity
Individual plumes not always Gaussian; but ensemble 
averages -> Gaussian 



Turbulent transport eqn
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How to measure eddy diffusivity

Measure u’, c’, etc. and correlate
Measure something else (e.g. dissipation) 
that correlates with E
Measure concentration distribution and 
calibrate E (more later)
Model it 

Less direct



Models of turbulent diffusion
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turbulent kinetic energy (don’t confuse 
with wave number)

1)  k-L model (two eqn model)
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2)  k model (one eqn; solve only for k; L is hardwired)



Models of turbulent diffusion, 
cont’d
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turbulent kinetic energy

3)  k-ε model (two eqn model)

ε ~ k/τ ;  τ = time scale of turb. ~ L/k 1/2

ε ~ k 3/2/L or L ~ k 3/2/ε
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A gazillion analytical solutions

Instantaneous Point Source (Sec 2.2)
Instantaneous Line Source (Sect 2.3)
Instantaneous Plane Source (Sect 2.4)
Continuous Point Source (Sect 2.5)
Continuous Line Source (Sect 2.6)
Continuous Plane Source (Sect 2.7)

Simple ones, e.g., u = const, given in following



Instantaneous (point) source in 3D
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Instantaneous (line) source in 2D
(e.g. extending over epilimnion)

y
M/h (or m’)

u
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Instantaneous (plane) source in 1D
c

u

x(or m’’)M/A at t=0
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Continuous (point) source in 3D
y
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Continuous (line) source in 2D
(e.g. extending over epilimnion)
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Continuous (plane) source in 1D
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A few comments re solutions

Spatial integration of point source => 
line source => plane source
Temporal integration of inst source => 
Continuous source
Relationship between σ’s and E’s found 
from spatial moments (as before)



Comments, cont’d

c ~ t-1/2, t-1, t-3/2 for instantaneous 1, 2, 3-D 
sources
c ~ x-0, x-1/2, x--1 for continuous 1, 2, 3-D 
sources (difference: negligible Ex)
Assumes E’s are constant.  If not, E’s are 
‘apparent’ (more later)
Most common method to determine E is to fit 
to measured concentration distribution 
(tracer, drogues)



Boundary Conditions
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Inst. Pt. Source in Linear Shear
u(z)

z

M at t=0
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Inst. Pt. Source in Linear Shear, cont’d
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Okubo (1970)
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Fluorescent Tracer

Rhodamine WT 
(red dye; 
fluoresces orange)
Injected as 
neutrally buoyant 
liquid
Flow thru or in situ
fluorometer (I ~ c)
Detection ~ 10-10

Lamp

Many wavelengths 
of light

Specific wavelengths 
of light

Cuvette or 
sample cell

Emission filter

Light detector

Wavelengths specific 
to the compound

Wavelengths created by the
compound, plus stray light

Digital readout

Excitation 
filter

555 nm

580 nm

Figure by MIT OCW.



Example
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Figure by MIT OCW.



Injected as gas dissolved in water
Sampled with Niskin bottle or equiv 
(profiles collected w/ Rosette sampler)
Analyzed w/ shipboard GC w/ electron 
capture
Detection ~10-17

SF6

Vent

Carrier Gas Column

Injection 
Port

Oven

Detector

Reference

Sensing

Recorder

Figure by MIT OCW.



North Atlantic Tracer Release Experiment (NATRE)

Mass of SF6: 139 kg
Location: 1200 km W of 
Canary Is.
Depth = 310 m
Time: 5-13 May, 1992
References:

Ledwell et al., Nature, 
1993
Ledwell et al., JGR, 1998

Images: Kim Van Scoy
Six Months After Release

26 N
100 km

25 N

24 N
31 W 30 W 29 W

Two Weeks After Release

Release Pattern

20 km

Figures by MIT OCW.



NATRE, cont’d

Images: Kim Van Scoy

Six Months After Release
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Figure by MIT OCW. Figure by MIT OCW.



Drogues (drifters)

Floats w/ large drag 
at constant depth
Have flag or 
periodically rise to 
surface
Position viewed from 
above or recorded 
using GPS



Horizontal Diffusion
Historically analyzed using vertical line source  in 
cylindrical coordinates (rather than x, y)

y Actual patch

x

Equiv. circular patch

r
x, y are relative (to 
center of mass) 
coordinates

injection



Cylindrical Coordinates, cont’d
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NATRE

Horizontal
Diffusion
Diagram
(Okubo 1971)

107

108 100 m

1 km

10 km

100 km
t2.3

107106105

t (sec)
104103

Hour Day Week Month

109

1010

1011

1012

σ r
 (c

m
2 )

2

1013

1014

Rheno

North Sea

Off 
California

Off Cape 
Kennedy

1964 V
1962 III
1962 II
1961 I

New York Bight

# 1
# 2
# 3
# 4
# 5
# 6

# a
# b
# c
# d
# e
# f

Banana river

Manokin river

Figure by MIT OCW.



Horizontal Diffusion Summary

15.1

15.1

34.1
2

34.22

017.0

085.0

006.0
4

011.0

l=

=

==

=

r

rr

r
r

r

E

E

t
dt

dE

t

σ

σ

σ
cgs units; some data from pt 
source, some from line source 
(not quite proper but…)

rσ4=l arbitrary length 
scale of patch



Example

100 kg of paint spilled in Mass Bay over a depth of 10m; 
how widely will it have spread in one week?

σr
2 = 0.011 t2.34 = 3.7x1011 cm2 = 3.7 x 107 m2

σr = 6000 m

Peak concentration?

22 /
2

/
rrkt

r

eehMc σ

πσ
−−= k = r = 0; h = 10m; M = 100 kg; t 

=86400x7=600,000 s

c = 8.6x 10-8 kg/m3 = 8.6 x 10-5 mg/L

Gaussian fit; actual peak may be higher



σr
2=3.7x1011 cm2

σr = 6000 m

Figure by MIT OCW.
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A few more comments

Three ways to relate tracer spreading: 
σ(t), E(t), E(σ)
E(σ) => scale dependent diffusion.
Not truly stationary => ensemble 
average not same as individual 
realization (absolute vs relative 
diffusion; more later)

is arbitrary; others choose rσ4=l

σσ 12,5.3 == ll



A few more comments, cont’d
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Ave slope ~ Ea
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t
Richardson’s  4/3 law

4/3 rather than 1.15; theoretical (but not 
empirical) basis
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Interpretation of Scale-dependent 
horizontal diffusivity & 4/3 law

Eddy Soup: As patch increases in size it 
encounters eddies of increasing size (eddies 
smaller than patch spread patch while larger 
eddies merely advect it)
4/3 Law interpreted as shear dispersion: 
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Interpretation of 4/3 law, cont’d
4/3 law in inertial sub-range

ηππ /2/2 L

Sk = kinetic energy density

k = wave number

Sk~ε2/3k-5/3 Inertial sub-range

E = diffusivity ~ u’L

ε= dissipation rate ~ dk/dt ~ u’2/t ~ u’2/(L/u’) ~ u’3/L = const

u’ ~ L1/3

E ~ u’L ~ L4/3



Summary

Fickian Okubo 4/3 Law Gen’l

σ2(t) σ2 ~ t σ2 ~ t2.34 σ2 ~ t3 σ2 ~ tq

E ~ tq-1

E ~
σ(2q-2)/q

E(t) E~const E ~ t1.34 E ~ t2

E(σ) E~const E ~ σ1.15 E ~ σ4/3



Absolute vs Relative Diffusion
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Absolute vs Relative Diffusion
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Absolute vs Relative Diffusion

y

Σσu

Absolute diffusion (Σ2) > Relative 
diffusion (σ2); ratio decreases with 
time



Do the values of Er differ (and if 
so, which is right)?

T(z)h

A B C
small      point source line source

drogue of dye of dye
cluster

z



Do the values of Er differ (and if 
so, which is right)?

h T(z)

A B C
small      point source line source

drogue of dye of dye
cluster

z

Er < Er < Er

(drogue) (point) (line)



Okubo et al. (1983)
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Figure by MIT OCW.



OK, the values of Er differ, but 
which is right?

h T(z)

All can be right

Key: use the same equation for modeling as calibration
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Diffusivities in numerical models 
(with finite grid sizes)
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Vertical Diffusion

Fit to large scale property 
distributions

Flux gradient method (lakes & 
reservoirs)
Upwelling diffusion (ocean)

Measured rate of spread of 
tracer second moment
Rates of measured dissipation
Others

Decreasing 
time scale



Flux-gradient method
z

Below depth of 
other sources/sinks, 
thermal energy 
increases only by 
turbulent diffusion
Applicable to 
relatively long time 
steps (e.g. weeks or 
more) 
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North Anna Power Station (WE2-1)

Pond 1

Elk Creek
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Figure by MIT OCW.



Temperature and DO profiles

June-August average Ez = 
0.11 m2/d (0.013 cm2/s)
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Vertical Diffusion from NATRE

Ledwell, et al., 1993 yr)(2/scm17.0
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Measured dissipation
From previous discussion

ηππ /2/2 L

Sk = kinetic energy density

k = wave number

Sk~ε2/3k-5/3
Inertial sub-range

Turbulent 
velocities 

generated by 
mean flow

Dissipated by 
molecular diffusion

Turbulent temperature variations similar to turbulent velocity variations



Temperature Micro-profile

<T>

T = <T> + T’

T(z)

Measured with temperature 
microstructure probe; 
resolution < 1 mm

z
Generation (of temp variance)

~ Ez (d<T>/dz)2

Dissipation (of temp variance)

~ κ (dT’/dz)2

Ez = turbulent eddy diffusivity

κ = molecular thermal diffusivity



Formulae based on measured dissipation

Osborn-Cox (1972), Sherman-Davis (1995)
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Osborn (1980)

χ = temp variance dissipation rate [K2s-1]

T(z) = <T> + T’

κ = molecular thermal diffusivity [m2s-1]

I ~ 3 (accounts for gradient in T’ in 3 
directions)

N2 = (g/ρ)(dρ/dz) [s-2]

ε = TKE dissipation rate [m2s-3]

γmix = const <= 0.2
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Examples

Stevens, et al. 2000
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Langmuir Circulation

Oil Streaks

Wind

Figure by MIT OCW.



Formulae for Ez
Open waters, near surface

Ichiye (1967);  z = depth;  
Hw, Tw, Lw = significant wave 
height, period and length

wLz

w

w
z e

T
HE /4

2028.0 π−=

In presence of stratification and shear

( )2

2/3

/
/)/(

3
101

dzdu
dzdg

Ri

RiEE zoz

ρρ
=

⎥⎦
⎤

⎢⎣
⎡ +=

−

Munk & Anderson (1948);

Ri = gradient Richardson no

Ezo = value at neutral 
stratification 



Formulae for Ez
Stratification only (near surface)

Koh and Fan (1970)

[Ez in cm2/s; dρ/dz in g/cm4]z
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Stratification only (deep waters)

Broecker and Peng (1982)
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Formulae, cont’d
Rivers

u* = friction velocity, h = 
water depth, z = height above 
bottomhuE
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Pritchard (1971); 
η = 8.59 x 10-3, 
ζ = 9.57 x 10-3, 
β = 0.276

u = mean tidal speed



Koh and Fan (1970) 100(dρ/dz) (g/cm4)
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Application: coastal sewage 
discharge from multi-port diffuser

b = 300 m
H = 30 m
h = 10 m
u = 0.1 m/s
NF dilution SN = 100
How far ds until SF =10? 

(ST=SNSF=1000)
Formal solution by Brooks in 

Section 2.8; approximate 
solution follows

b
L

x

y

z

H

u

h

Assume



Sewage discharge, cont’d
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to = 22000s t = 162000s
x = u(t-to) = (0.1)(162000-22000) = 14 km
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Neglect of vertical diffusion

Reasonable?
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Vertical diffusion, cont’d
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Koh and Fan (1970)
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Atmospheric, surface water and 
ground water plumes
Similarities

Same transport equation (porosity 
included in some GW terms)
Scale-dependent dispersion. Similar 
mechanisms: non-uniform flow 
(differential longitudinal advection plus 
transverse mixing)
Ex > Ey >> Ez

Differences, too



Atmospheric Plumes
Modest NF mixing 
(wind quickly 
dominates)
Often large “point”
sources
Time scales: minutes 
to days
Non-uniform wind 
caused by shear and 
density stratification

Image courtesy of usgs.gov.



Stratification

For examples of plume types, please see:
http://www.environmenthamilton.org/projects/stackwatch/plume_types.htm



Typical analysis

Image source 
for ground 
level 
exposure
NF mixing 
handled by 
virtual 
elevation
Cooper and 
Alley (1994) 
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Figure by MIT OCW.



Diffusion diagrams

Turner (1970); Cooper and Alley (1994)

0.1

10

100

σ y
, m

et
er

s

σ z
, m

et
er

s

1000

10,000

1
Distance Downwind, km

lateral
X

10 100 0.1
1.0

10

100

1000

5000

1
Distance Downwind, km

vertical
X

10 100

D

F

E

A

C
B

B
A

C

D E

F

stable
stable

Figure by MIT OCW.



STABILITY CLASSIFICATIONS*

*

Surface Wind
Speeda (m/s)

< 2
2-3
3-5
5-6
> 6

Notes:-
a) Surface wind speed is measured at 10 m above the ground.
b) Corresponds to clear summer day with sun higher than 60o above the horizon.
c) Corresponds to a summer day with a few broken clouds, or a clear day with the sun 35-60o 
    above the horizon.
d) Corresponds to a fall afternoon, or a cloudy summer day, or clear summer day with the sun
    15-35o.
e) Cloudiness is defined as the fraction of sky covered by clouds.
f) For A-B, B-C, or C-D conditions, average the values obtained for each. 

A = Very unstable, B = Moderately unstable, C = Slightly unstable, D = Neutral, E = Slightly stable,
and F = Stable.
Regardless of wind speed, Class D should be assumed for overcast conditions, day or night.
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Groundwater Plumes
No (dynamic) NF
Distributed, poorly 
characterized sources
Multiple phases 
(contaminant and 
medium)
Laminar (turbulent 
fluctuations replaced by 
heterogeneity)
Time scales: months to 
decades



Heteorogeneity
Causes non-uniform flow => macro-dispersion
Often poorly resolved: handled stochastically
Plumes often (very) non-Gaussian



MADE experiments at CAFB

Please see:

http://repositories.cdlib.org/cgi/viewcontent.cgi?article=1408&conte
xt=lbnl



Dispersivity, α [L]
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Superposition: Puff models
MIT Transient Plume Model
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