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Prof. Charles Harvey 

Lecture Packet #9: Numerical Modeling of Groundwater Flow 

Simulation: The prediction of quantities of interest (dependent variables) based upon 
an equation or series of equations that describe system behavior under a set of 
assumed simplifications. 

Groundwater Flow Simulation 

•	 Predict hydraulic heads (1D, 2D, 3D) 
•	 For particular conditions – confined, unconfined, isotropic, anisotropic,


homogeneous, heterogeneous, infinite, finite, steady, transient. 

•	 Varying levels of complexity:


 Analystic solutions – Theim, Theis, etc. 

 Advantages: exact, simple, cheap, can provide sufficient insight 

 Analog simulation 
 Physical models – scale models of aquifers 
 Numerical Simulation 

Numerical Simulation 
•	 Given a PDE and appropriate ICs and BCs 
•	 Discretize the system 
•	 Approximate the PDE corresponding to the discretization 
•	 Solve the approximated PDE on a computer 
•	 Commonly finite differences or finite elements for GW flow 
•	 Advantages: can handle complex geometries, ICs, and C conditions; can be 

used for nonlinear systems. 

Beware of the term “Model” and how it is used 
•	 “A model should be used as simple as possible, but not simpler” 
•	 Mathematical “model” – a PDE 
•	 Numerical “model” – a particular technique is applied 
•	 Computer or simulation “model” – a code 

Finite Differences 

A numerical method that approximates the governing PDE by replacing the 
derivatives in the equation with their respective difference representations. 

Procedure involves: Grid (or Mesh) and Equation 

Grid – a representation of the physical domain that enables one to account for the 
boundaries and internal features 
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Equation – Difference Approximation of Derivatives 

2 2∂ h ∂ h S ∂ h 
∂ x 2 + ∂ y 2 = 

T ∂ t 2D flow equation 

Approximating the Time Derivative: 

Backward Difference: 
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where,  time step

n = the current time step index 

∆ t = time step 


  i,j = x and y coordinate indices 


Approximating the Space Derivatives: 

Consider a 2D discretization, if we assume that the grid spacing in the x-direction 
and y-direction are the same, our discretized grid for an internal node will be: 
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In the x-direction: 


Approximate derivative at location hi,j: 
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Approximate the second spatial derivative at i,j as follows: 
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We can approximate the first spatial derivative at i-1/2,j and i+1/2,j as follows: 

x 
− 

∂ 

∂⎛
⎜⎜

hi hi, j −
hi ,1 − 1 

x 
+ 

∂ 

∂⎛
⎜⎜

hi +hi ,1 −
hi, j⎞
⎟⎟


⎛
⎜⎜


⎞
⎟⎟


⎞
⎟⎟


⎛
⎜⎜


⎞
⎟⎟


j j j j/ , 2 / , 2 and≈ ≈ 
∆
 ∆
x x⎝
 ⎝
⎠
 ⎝
⎠
 ⎝
⎠
 ⎠


Substitute the above equations to obtain: 
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In the y-direction: 
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Combining Flow Equation Terms: 
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For the backwards difference time derivative (note: all left hand side values of h are 
for time = n-1) 

Linear diff. eq’n.  This eq’n is h −
2
h +
h −h 1 −
2
h +
h S h −h 1− − ,1 j i j i+ ,1 j i j i j i j i j i j, n n, , , , , , ,+1 
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particular time 

+
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If ∆ x and ∆ y are equal – this is the finite difference groundwater flow equation 
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h i − ,1 j + hi + ,1 j + hi , j − 1 + hi , j + 1 − 4 hi , j S hi , j , n − hi , j , n − 1 = 
∆ x 2	 T ∆ t 

What does the finite-difference equation indicate for steady state conditions? 
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∂ t ⎝ ∆ t 

h 

⎠ 

i − ,1 j + hi + ,1 j + hi , j − 1 + hi , j + 1 − 4 hi , j = 0 
∆ x 2


h 

h i − ,1 j + hi + ,1 j + hi , j − 1 + hi , j + 1 − 4 hi , j = 0
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Flow 

Value of head at node is the average of the surrounding nodes (for SS isotropic 
homogeneous case) 

Consider the 1D steady-state flow equation with a sink is: 

2
H d T − w ' = 0 or 
dx 2 

2
H d w ' 
=


dx 2 T ∆ x 


h1  h2  h3H=10 H=9 

Node 
0 1 2 3 4 
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The nodal finite difference equation is: 

hi , j −1 − 2hi , j + hi , j +1	 w ' 
=


∆x 2 T

Or 

( )2∆ w x ' 
=h i , j −1 − 2hi , j + hi , j +1 T 

Node 1:
  1H0  + -2h1 + 1h2 = 0 

  1(10) + -2h1 + 1h2 = 0 

  -2h1 + 1h2 = -10 
Node 2: 

1h1 + -2h2 + 1h3  = 0 

Node 3: 


Node 3 has a forcing term due to the pumping of the well.  This translates into an 

initial righthand side of the equation:


2∆ w x ' ( 1.0 )21
Given ∆x = 0.1, 

( )
= = 1

T 01. 

  1h2 + -2h3 + 1H4  = 1


  1h2 + -2h3 + 1(9) = 1


  1h2 + -2h3 =  1-9 = -8


The system of finite-difference equations consists of 3 equations and 3 unknowns 

− 2h 1 1h 2 = −10 
h 1 − 2h 2 1h 3 = 0 

1h 2 − 2h 3 = −8 
Unknowns Knowns 

Or in coeffiecient matrix form 

⎛− 2 1 ⎞⎛ h 1 ⎞ ⎛−10⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟ 
⎜ 1 − 2 1 ⎟⎜h 2 ⎟ = ⎜ 0 ⎟ 
⎜ ⎟⎜ ⎜
⎝ 1 − 2⎠⎝h 3 ⎠

⎟ 
⎝ − 8 ⎠⎟ 

FD Coeff. Unknown  RHS containing 
Matrix Heads 	 boundary


conditions and

known pumping 
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Or in matrix notation it can be written as 


Ah = b’ 


A is the matrix of difference coefficients 

H is the vector of unknown heads 
b’ is the RHS vector of known quantities 

A computational linear solve yields the vector h: 
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1 2 3 4 

Transient Simulation Using Finite Differences 

Procedure: March Through Time 

h1 

h
h 

105.9 ⎛
⎜
⎜
⎜


⎛
⎜
⎜
⎜


⎞
⎟
⎟
⎟


⎞
⎟
⎟
⎟


9
 9.5 =


5.8
⎝
 ⎝
⎠
 ⎠
 9.0 

• Start with initial conditions (these are known) 
• Solve for heads at end of first time step ∆t; this give the spatial distribution of 

head (a map) after a small time increment. 
• 

• 

Given known heads at end of first time step solve for heads at the end of the 
second time step. 
With known value at the end of time step solve for next time step – this is 
called marching through time 

Ahn = b* where   b* = b’ + hn-1 

The right-hand side always contains knowns.  The matrix A is the matrix of finite 
difference coefficients reflecting the system parameters and discretization. 

So if you can solve spatial equations for one time step. Then you can solve it for as 
many time steps as you like.  

The time step must be small when changes in heads are rapid – such as, when you 
start to pump a well, ∆t must be seconds or minutes. It can be increased as changes 
in head become smaller. 

FD Simulation Models: codes that solve the above system of linear algebraic 
equations – fairly robust. 
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Time Stepping 

⎧ hi − 1 − 2 hi + hi + 1 ⎫ S h n i − h n i − 1, ,
⎨ ⎬ = 

T ∆ t⎩ ∆ x 2 ⎭ n? n-1? 
Something 
else? 

head 

Explicit 

Crank-
Nicholson 

Implicit 

∆ h 

∆ t 

hn-1 

hn 

tn-1 tn 

∆t T 
− 2 hi + hi + 1 ) = h , ,( hi − 1 n i − h n i − 1 s ∆ x 2 

Explicit: hi,n = chi-1,n-1 + (1-2C)hi,n-1 + chi+1,n-1 

t T ∆
Where: c = 

s ∆ x 2 

Easy to calculate – no linear algebra, but unstable if time-steps are too large. 


Implicit: chi-1,n - (1+2C)hi,n + chi+1,n = -hi,n-1


Results in system of linear equations that must be solved simultaneously.  Stable, 

but issues of accuracy. 

c hCrank Nicholson: 
2 i − ,1 n − (1+ h c ,) n i + 

c hi + ,1 n = ( c − 1)hi − ,1 n − 
c ( hi − ,1 n − 1 + hi − ,1 n − 1 )2 2 

Not much more numerical expense than fully implicit, but more accurate 

Boundary Conditions: 

Constant Head – Don’t write equation for constant head node.  Use value of constant 
head in equations for neighboring nodes.  

Flux Boundary – replace first derivative term with constant 

h⎛ ∂ 

h ⎛ i − ,1 j − hi , j − 
hi , j − hi + ,1 j ⎞

⎟⎟2 

2 
i , j ⎞
⎟ ≈
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⎝ ∆ x⎜ ⎟ ∆ x ⎠ 

⎜ ∂ x ⎠ ∆ x⎝ 
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∆ x T 
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