Lecture Notes on Fluid Dynmics
 (1.63J/2.21J)
 by Chiang C. Mei, MIT

3-6unsteadyBL.tex

3.6 Unsteady boundary layers

Let us begin from the full momentum equation

$$
\begin{equation*}
\vec{q}_{t}+\vec{q} \cdot \nabla \vec{q}=-\frac{1}{\rho} \nabla p+\nu \nabla^{2} \vec{q} \tag{3.6.1}
\end{equation*}
$$

Let the veloicty and times scales be U_{o} and T, the tangential length scale be L and the transverse length scale be $\delta \sim \sqrt{\nu T}$. Hence the suitable normalization is

$$
\begin{align*}
& x^{\prime}=x / L, \quad y^{\prime}=y / \sqrt{\nu T}, \quad t^{\prime}=t / T \\
& u^{\prime}=u / U_{o}, \quad v^{\prime}=\frac{v L}{U_{o} \delta}=\frac{v}{U_{o}} \sqrt{\frac{L^{2}}{\nu T}} \tag{3.6.2}\\
& p=\frac{p T}{\rho U_{o} L}, \quad U^{\prime}=U / U_{o} .
\end{align*}
$$

If primes are omitted for brevity, the dimensionless equations are,

$$
\begin{align*}
u_{x}+v_{y} & =0, \tag{3.6.3}\\
u_{t}+\frac{U_{o} T}{L}\left(u u_{x}+v u_{y}\right) & =-p_{x}+\frac{\nu T}{L^{2}} u_{x x}+u_{y y} \tag{3.6.4}\\
\frac{\nu T}{L^{2}}\left[v_{t}+\frac{U_{o} T}{L}\left(u v_{x}+v v_{y}\right)\right] & =-p_{y}+\frac{\nu T}{L^{2}}\left[\frac{\nu T}{L^{2}} v_{x x}+v_{y y}\right] \tag{3.6.5}
\end{align*}
$$

Outside the viscous boundary layer,

$$
\begin{equation*}
U_{t}+\left(\frac{U_{o} T}{L}\right) U U_{x}=-\frac{1}{\rho} p_{x} \tag{3.6.6}
\end{equation*}
$$

Two parameters control the motion: $U_{o} T / L$ (inertia) and $\nu T / L^{2}$ (viscosity).
Several scenarios are possible:

1. Low amplitude and slow motion: $U_{o} T / L \ll 1, \nu T / L^{2}=O(1)$. The tangential and transverse scales are comparable. To the leading order, the approximate equations in physical coordinates are

$$
\begin{gather*}
u_{x}+v_{y}=0, \tag{3.6.7}\\
\vec{q}_{t}=-\frac{1}{\rho} \nabla p+\nu \nabla^{2} \vec{q} \tag{3.6.8}
\end{gather*}
$$

This is just the Oseen's approximation.
2. Finite amplitude, fast motion, $U_{o} T / L=O(1), \nu T / L^{2} \ll O(1)$. The boundary layer is thin. To the leading order, nonlinearity is important in the boundary layer.

$$
\begin{align*}
u_{x}+v_{y} & =0 \tag{3.6.9}\\
u_{t}+\frac{U_{o} T}{L}\left(u u_{x}+v u_{y}\right)=-p_{x}+u_{y y} & =U_{t}+\frac{U_{o} T}{L} U U_{x}+u_{y y} \tag{3.6.10}
\end{align*}
$$

or, in physical coordinates,

$$
\begin{equation*}
u_{t}+\left(u u_{x}+v u_{y}\right)=U_{t}+U U_{x}+\nu u_{y y} \tag{3.6.11}
\end{equation*}
$$

3. Small-amplitude and fast motion. $\nu T / L^{2} \ll U_{o} T / L \ll 1$. This is a limit of the preceding case; linearization is possible. Examples are : the initial stage of transient motion starting from rest, oscillating flow around a vibrating body, or wave motion (sound or sea waves) past a body (or a droplet, a bubble), etc.
